摘要:
본 발명은 3차원 플래시 메모리에 관한 것으로, 수직 셀에서 셀간 절연층에 의한 간섭 현상을 억제하고, 안정적인 수직 채널층을 형성하는 기술, 종래의 3차원 플래시 메모리보다 배선의 길이를 감소시켜 동작 속도 및 전력 소모 등의 칩 특성이 저하되는 문제점과 제조 공정 상 배선 기술의 어려움을 극복하는 기술 및 채널층과 ONO층의 수평 집적도를 개선시키는 기술을 제안한다.
摘要:
Split memory cells can be provided within an alternating stack of insulating layers and word lines. At least one lower-select-gate-level electrically conductive layers and/or at least one upper-select-level electrically conductive layers without a split memory cell configuration can be provided by limiting the levels of separator insulator structures within the levels of the word lines. At least one etch stop layer can be formed above at least one lower-select-gate-level spacer material layer. An alternating stack of insulating layers and spacer material layers is formed over the at least one etch stop layer. Separator insulator structures are formed through the alternating stack employing the etch stop layer as a stopping structure. Upper-select-level spacer material layers can be subsequently formed. The spacer material layers and the select level material layers are formed as, or replaced with, electrically conductive layers.
摘要:
An alternating stack of sacrificial material layers and insulating layers is formed over a substrate. Replacement of sacrificial material layers with electrically conductive layers can be performed employing a subset of openings. A predominant subset of the openings is employed to form memory stack structures therein. A minor subset of the openings is employed as access openings for introducing an etchant to remove the sacrificial material layers to form lateral recesses and to provide a reactant for depositing electrically conductive layers in the lateral recesses. By distributing the access openings across the entirety of the openings and eliminating the need to employ backside trenches for replacement of the sacrificial material layers, the size and lateral extent of backside trenches can be reduced to a level sufficient to accommodate only backside contact via structures.
摘要:
A method of making a monolithic three dimensional NAND string includes forming a stack of alternating first and second material layers over a substrate, etching the stack to form a front side opening, partially removing the second material layers through the front side opening to form front side recesses, forming a first blocking dielectric in the front side recesses, forming charge storage regions over the first blocking dielectric in the front side recesses, forming a tunnel dielectric layer and a semiconductor channel over the charge storage regions in the front side opening, etching the stack to form a back side opening, removing the second material layers through the back side opening to form back side recesses using the first blocking dielectric as an etch stop, forming a second blocking dielectric in the back side recesses, and forming control gates over the second blocking dielectric in the back side recesses.
摘要:
An advanced metal-nitride-oxide-silicon (MNOS) multiple time programmable (MTP) memory is provided. In an example, an apparatus includes a two field effect transistor (2T field FET) metal-nitride-oxide-silicon (MNOS) MTP memory. The 2T field FET MNOS MTP memory can include an interlayer dielectric (ILD) oxide region that is formed on a well and separates respective gates of first and second transistors from the well. A control gate is located between the respective gates of the first and second transistors, and a silicon-nitride-oxide (SiN) region is located between a metal portion of the control gate and a portion of the ILD oxide region.
摘要:
A device includes a memory and a read/write (R/W) unit. The memory includes multiple gates coupled to a common charge-trap layer. The R/W unit is configured to program and read the memory by creating and reading a set of electrically-charged regions in the common charge-trap layer, wherein at least a given region in the set is not uniquely associated with any single one of the gates.
摘要翻译:一个设备包括一个存储器和一个读/写(R / W)单元。 存储器包括耦合到公共电荷陷阱层的多个门。 R / W单元被配置为通过在公共电荷陷阱层中创建和读取一组充电区域来对存储器进行编程和读取,其中集合中的至少一个给定区域不是唯一地与 大门。
摘要:
A charge-trapping NOR (CT-NOR) memory device and methods of fabricating a CT- NOR memory device utilizing silicon-rich nitride (SiRN) in a charge-trapping (CT) layer of the CT-NOR memory device.
摘要:
Embodiments described herein generally relate to methods of manufacturing n-type lightly doped drains and p-type lightly doped drains. In one method, a photoresist mask is used to etch a transistor, and the mask is left in place (i.e., reused) to protect other devices and poly while a high energy implantation is performed in alignment with the photoresist mask, such that the implantation is adjacent to the etched transistor. One example of a high energy implantation is forming lightly doped source and drain regions. This technique of reusing a photoresist mask can be employed for creating lightly doped source and drain regions of one conductivity followed by using the technique a second time to create lightly doped source and drain regions of the complementary conductivity type. This may prevent use of at least one hard mask during manufacturing.
摘要:
A semiconductor device and method of making such device is presented herein. The method includes disposing a gate layer over a dielectric layer on a substrate and further disposing a cap layer over the gate layer. A first transistor gate is defined having an initial thickness substantially equal to a combined thickness of the cap layer and the gate layer. A first doped region is formed in the substrate adjacent to the first transistor gate. The cap layer is subsequently removed and a second transistor gate is defined having a thickness substantially equal to the thickness of the gate layer. Afterwards, a second doped region is formed in the substrate adjacent to the second transistor gate. The first doped region extends deeper in the substrate than the second doped region, and a final thickness of the first transistor gate is substantially equal to the thickness of the second transistor gate.