Abstract:
A new solid state field effect bipolar device provides for high current gain and low input capacitance, while avoiding the "punch-through" effects that limit the downward scaling of conventional bipolar and field effect devices. The device typically compromises a metallic (e.g. a metal or silicide) emitter, which makes ohmic contact to a semi-insulator; a channel terminal which contacts an inversion layer formed at the interface between the semiinsulator and a semiconductor depletion region; and a collector, which is the semiconductor bulk. The novel device controls the flow of majority carriers from the emitter into the collector by the biasing action of charge in the inversion channel. The technique can be utilized in making a transistor, photodetector, thyristor, controlled optical emitter, and other devices.
Abstract:
Die Erfindung betrifft einen Transistor mit einem Emitter (1), einem Kollektor (2) und einer Basisschicht (3) bei dem sich der Emitter (1) in die Basisschicht (3) hineinerstreckt, bei dem die Basisschicht (3) einen zwischen Emitter (1) und Kollektor (2) angeordneten intrinsischen Bereich (4) und ei-nen zwischen dem intrinsischen Bereich (4) und einem Basis-kontakt (5) verlaufenden extrinsischen Bereich (6) aufweist, bei dem die Basisschicht (3) eine mit einem dreiwertigen Do-tierstoff dotierte erste Dotierschicht (7) enthält, die sich in den extrinsischen Bereich (6) erstreckt und die im Bereich des Emitters (1) durch eine fünfwertige Gegendotierung (8) gegendotiert ist. Durch die erste Dotierschicht (7) kann der elektrische Widerstand der Basisschicht (3) in vorteilhafter Weise reduziert werden.
Abstract:
A collector (204) is deposited and a base (222) grown on the collector (204), for example, epitaxially depositing either silicon or silicon germanium. An emitter (230) is fabricated on the base (222) followed by implant doping an extrinsic base region (224), using for example, boron. The extrinsic base region (224) doping diffuses out during subsequent thermal processing steps in chip fabrication, creating an out diffusion region (226) in the device, which can adversely affect various operating characteristics, such as parasitic capacitance and linearity. Counter doping using arsenic or phosphorus controls the out diffusion. Also the counter doping can be formed using tilt implanting or, alternatively, by region by implant doping the counter doped region (228) and forming a spacer (not shown) on the base (222) prior to implanting the extrinsic base region (224).
Abstract:
Methods, systems, circuits, and devices for power-packet-switching power converters using bidirectional bipolar transistors (BTRANs) for switching. Four-terminal three-layer BTRANs provide substantially identical operation in either direction with forward voltages of less than a diode drop. BTRANs are fully symmetric merged double-base bidirectional bipolar opposite-faced devices which operate under conditions of high non-equilibrium carrier concentration, and which can have surprising synergies when used as bidirectional switches for power-packet-switching power converters. BTRANs are driven into a state of high carrier concentration, making the on-state voltage drop very low.
Abstract:
Fabrication methods, device structures, and design structures for a bipolar junction transistor. The device structure (14) includes a collector region (18), an intrinsic base formed (22)on the collector region (18), an emitter (74) coupled with the intrinsic base (22) and separated from the collector (18) by the intrinsic base (22), and an isolation region extending through the intrinsic base (22) to the collector region (18). The isolation region is formed with a first section having first sidewalls (29,35) that extend through the intrinsic base (22) and a second section with second sidewalls (31, 33) that extend into the collector region (18). The second sidewalls (31, 33) are inclined relative to the first sidewalls (29, 35.) The isolation region is positioned in a trench (34, 36) that is formed with first and second etching process in which the latter etches different crystallographic directions of a single-crystal semiconductor material at different etch rates.
Abstract:
Disclosed are embodiments of an improved transistor structure (100) (e.g., a bipolar transistor (BT) structure or heterojunction bipolar transistor (HBT) structure) and a method of forming the transistor structure (100). The structure embodiments can incorporate a dielectric layer (130) sandwiched between an intrinsic base layer (120) and a raised extrinsic base layer (140) to reduce collector-base capacitance C cb , a sidewall-defined conductive strap (150) for an intrinsic base layer (120) to extrinsic base layer (140) link-up region to reduce base resistance R b and a dielectric spacer (160) between the extrinsic base layer (140) and an emitter layer (180) to reduce base- emitter C be capacitance. The method embodiments allow for self-aligning of the emitter to base regions and further allow the geometries of different features (e.g., the thickness of the dielectric layer (130), the width of the conductive strap (150), the width of the dielectric spacer (160) and the width of the emitter layer (180)) to be selectively adjusted in order to optimize transistor performance.
Abstract:
Gemäß Anspruch 1 umfasst der erfindungsgemäße Bipolartransistor 1 einen Emitter 20, der teilweise einkristallin und teilweise polykristallin oder amorph ausgebildet ist (partiell einkristalliner Emitter). Außerdem weist die Basis 30b des Bipolartransistors 1 eine Kohlenstoff- oder Sauerstoffkonzentration im Bereich von 2x10 19 bis 2x10 21 cm -3 . Eine solche Struktur webessert die Hochfrequenzeigenschaften des Bipolartransistors und vermindert das Hochfrequenz-Rauschen. In einer Ausgestaltung der Erfindung liegt in der Basis 30b des Bipolartransistors eine Dotierstoffvereilung, vorzugsweise eine Borverteilung, mit einer Flächendosis von mindestens 4,5x10 13 cm -2 , vorzugsweise mindestens 7,5x10 13 cm -2 vor. Die Basis kann darüber hinaus auch Germanium enthalten.
Abstract translation:
宝石。 权利要求1,根据本发明的双极晶体管1包括部分为单晶且部分为多晶或非晶(部分单晶发射体)的发射极20。 此外,双极晶体管1的基极30b具有从2×10 19到2×10 21 cm -3的碳或氧浓度。 这种结构改善了双极晶体管的高频特性并降低了高频噪声。 在本发明的一个实施例在于在双极晶体管30b的一个Dotierstoffvereilung,优选硼分布的基础上,用FLÄ至少4.5×10 13 SUP>厘米 -2 SUP>,优选至少chendosis 7.5×10 13 cm 2 -2。 基地也可能含有锗。 P>
Abstract:
An element which includes a first film containing no impurity particles due to spontaneous oxidization or residual resist at its surface, and an electrically conductive material layer formed on a surface in contact with the surface of said first film. On the surface of the electrically conductive material layer is formed an insulating compound film as a result of surface reaction with the electrically conductive material layer, and on the surface of said first film is formed a desired second film that is necessary for constituting the element.