-
公开(公告)号:CN106283195A
公开(公告)日:2017-01-04
申请号:CN201610805277.0
申请日:2016-09-07
Applicant: 上海大学
Abstract: 本发明公开了一种连续生长大尺寸钙钛矿单晶的装置及方法,基于环流和逆温结晶来连续生长具有高结晶质量的钙钛矿单晶,属于新型材料器件制造工艺领域。本发明装置利用钙钛矿晶体生长瓶和原料驱动瓶中的温度差使装置中的钙钛矿溶液环流,将原料驱动瓶中的过饱和的钙钛矿溶液源源不断的输运到钙钛矿晶体生长瓶中参与逆温结晶。并通过控制钙钛矿晶体生长瓶和原料驱动瓶的各自的温度T1、T2和相应的温度差T,整体钙钛矿单晶的生长时间t,以及通过原料驱动瓶加入装置的原料m来控制钙钛矿单晶的生长速度和生长大小。本发明可以连续并且快速的生长钙钛矿单晶,易于大规模生产。通过本发明晶体制备方法,可生长得到对角线长度为钙钛矿晶体生长瓶尺寸大小的钙钛矿单晶,最大生长速度为1厘米/天,具有显著的产业化推广价值。
-
公开(公告)号:CN103993355B
公开(公告)日:2016-11-02
申请号:CN201410193673.3
申请日:2014-05-09
Applicant: 上海大学
Abstract: 本发明公开了一种CuInS2单晶体的制备方法,把高纯原料粉末Cu、In、S均匀混合,真空封装入反应器,并用单一温区摇摆炉混晶的方法制备了CuInS2多晶锭,作后续籽晶和单晶生长的原料,然后用布里奇曼法制备小的CuInS2单晶块作籽晶,最后用磁场和籽晶辅助的移动加热法生长大的CuInS2单晶,本发明还公开了一种CuInS2单晶体制备装置,由反应容器、垂直炉和外加磁场系统组成。本发明改善了常规移动加热法制备CuInS2晶体时,生长速度较慢的问题,同时提高了晶体的生长速度和晶体的利用率,有效解决大直径单晶CuInS2的制备工艺问题,并为制备性能优越的CuInS2薄膜太阳电池提供理论和实践的基础。
-
公开(公告)号:CN105742492A
公开(公告)日:2016-07-06
申请号:CN201610225882.0
申请日:2016-04-13
Applicant: 上海大学
IPC: H01L45/00
CPC classification number: H01L45/1253 , H01L45/149 , H01L45/16 , H01L45/1625 , H01L45/1641
Abstract: 本发明公开了一种具有单边阻变特性的碳基材料阻变存储单元及其制备方法,本发明碳基材料阻变存储单元包括衬底层、位于所述衬底层上的阻变层、位于所述阻变层上的包含两个平面电极的电极层,所述阻变层为掺杂有磁性元素的非晶碳薄膜阻变层,其中所述磁性元素的掺杂质量比为5?20 wt%。本发明通过一种新颖的电极结构使阻变现象仅发生在负电压,单边阻变现象使阻变存储单元热量损耗更小,提升阻变存储单元读取次数。本发明通过在非晶碳中掺杂磁性元素,使得掺杂的非晶碳薄膜阻变层在具有稳定阻变特性的同时还具有一定磁特性;阻变窗口>10,存储时间>1×105 s;结构简单,成本低廉。
-
公开(公告)号:CN105641780A
公开(公告)日:2016-06-08
申请号:CN201610139221.6
申请日:2016-03-12
Applicant: 上海大学
IPC: A61M5/168
CPC classification number: A61M5/1684 , A61M2005/16868 , A61M2205/18
Abstract: 本发明提供一种红外线输液分级预警系统,其包括电池等,电池位于壳体的一个侧面上,红色发光二极管、绿色发光二极管、黄色发光二极管、报警器、第一传感器都位于壳体的另一个侧面上,红色发光二极管、绿色发光二极管、黄色发光二极管、报警器、第一传感器、第二传感器依次从上至下排布,第二传感器位于支架的一个侧面上,监视框位于壳体的正面上,支架与壳体的底端固定。本发明根据医院给病人输液时的具体操作与需求,利用分级红外线传感器装置制备固定支架,使用时将输液瓶放置在设备中,当设备达到设置的液面时,报警器发出警报,给护士留下准备时间,节约人力资源,使病人得到更好的服务。
-
公开(公告)号:CN105197985A
公开(公告)日:2015-12-30
申请号:CN201510590063.1
申请日:2015-09-17
Applicant: 上海大学
IPC: C01G19/00
Abstract: 本发明公开了一种溶剂热法一步合成超长纤锌矿Cu2ZnSnS4纳米棒的制备方法。用于光伏电池材料技术领域。本发明方法是:将反应物前躯体即二水合氯化铜、氯化锌、五水合四氯化锡和L-半胱氨酸;乙二醇、油胺;草酸和十六烷基三甲基溴化铵加入到高压釜中,将反应温度升高到某一温度,恒温反应一段时间,然后移出加热装置使反应物冷却,向冷却后的反应物中加入甲苯和酒精使纳米粒子沉降;然后以一定转速离心一定时间,倒去上层溶液,收集下层沉淀物,重复离心数次至溶液澄清,收集沉淀物,最终得到高质量的超长纤锌矿Cu2ZnSnS4纳米棒。本发明的优点在于:超长纤锌矿Cu2ZnSnS4纳米棒的制备方法简单,可一步合成,合成温度低,所用前躯体材料成本低廉,结晶性优良,适合批量合成。
-
公开(公告)号:CN105158791A
公开(公告)日:2015-12-16
申请号:CN201510365453.9
申请日:2015-06-29
Applicant: 上海大学
IPC: G01T3/06
Abstract: 本发明公开了一种基于ZnO薄膜的集成式中子探测器及其制备方法,首先制备ZnO薄膜光导型紫外探测器,并在其上采用射频磁控溅射法制备表面均匀,结晶质量和闪烁性能良好的B、Ga共掺杂ZnO闪烁体薄膜,从而为实现一种B、Ga共掺ZnO闪烁体薄膜/ZnO薄膜光导紫外探测器结构的中子探测器提供了方法。本发明中子探测器采用B、Ga共掺杂ZnO闪烁体薄膜作为中子转化层将中子转化成α粒子,α粒子进一步激发B、Ga共掺杂ZnO闪烁体薄膜产生紫外线,再利用ZnO薄膜光导型紫外探测器探测紫外线,从而实现中子探测。
-
公开(公告)号:CN102709395B
公开(公告)日:2014-12-31
申请号:CN201210191009.6
申请日:2012-06-12
Applicant: 上海大学
IPC: H01L31/18
CPC classification number: Y02P70/521
Abstract: 本发明涉及一种CdZnTe薄膜肖特基结构紫外光探测器的制备方法,属于无机非金属材料器件制造工艺技术领域。本发明是采用近空间升华方法制备CdZnTe薄膜,并制作CdZnTe薄膜肖特基结构紫外光探测器,为制作高性能的紫外光探测器提供了新的方法。本发明是一种CdZnTe薄膜肖特基结构紫外光探测器,其特点在于,采用近空间升华方法制备高平整、颗粒尺寸小、电阻率高的CdZnTe薄膜样品。薄膜的面积>1cm2,薄膜的厚度为>10μm,电阻率达109Ω·cm;金属电极的厚度为50~300nm。
-
公开(公告)号:CN104085917A
公开(公告)日:2014-10-08
申请号:CN201410173339.1
申请日:2014-04-28
Applicant: 上海大学
IPC: C01G19/00 , B82Y30/00 , B82Y40/00 , H01L31/032
Abstract: 本发明公开了一种低成本、结晶性好的纤锌矿结构Cu2CdSnS4纳米线的制备方法。该方法首先在室温下,将乙酸镉和L-半胱氨酸与去离子水混合搅拌至完全溶解,再滴加无水乙二胺,搅拌均匀后180℃条件下反应24h;离心分离,收集下层沉底物,在60℃干燥5h,即得到CdS纳米线;然后,室温下将硫酸铜,氯化亚锡,L-半胱氨酸和上步制得的CdS纳米线溶于去离子水中,搅拌均匀。再向混和溶液中滴加无水乙二胺,搅拌均匀后180℃条件下反应24h;离心分离,收集下层沉底物,放入干燥箱中60℃干燥5h,即得到纤锌矿结构Cu2CdSnS4纳米线。本纳米线的制备方法操作简单,合成温度低,所用前躯体材料成本低廉,适合批量合成。所制备的纳米线可以作为太阳电池器件的吸收层材料。
-
公开(公告)号:CN103952675A
公开(公告)日:2014-07-30
申请号:CN201410173480.1
申请日:2014-04-28
Applicant: 上海大学
Abstract: 本发明为一种光伏材料硫化亚铜(Cu2S)薄膜的制备方法,公开了一种应用于光伏产业的硫化亚铜薄膜的制备技术。所述制备方法是基于直流磁控溅射技术。该工艺以高纯度硫化亚铜为溅射靶材,使用氩气作为工作气体。该方法具有沉积速率高、膜厚可控、重复性好等特点,可以制备大面积、均匀、高质量的硫化亚铜薄膜,有望实现硫化亚铜薄膜的产业化生产。
-
公开(公告)号:CN102386281B
公开(公告)日:2013-05-08
申请号:CN201110359607.5
申请日:2011-11-15
Applicant: 上海大学
IPC: H01L31/18 , H01L31/0296 , H01L31/0224
CPC classification number: Y02P70/521
Abstract: 本发明涉及一种基于ZnO/纳米金晶刚石薄膜异质结光电探测器的制备方法,属于无机非金属材料器件制造工艺领域。本发明主要特点在于采用高导电率的氢终端纳米金刚石薄膜作为p型层,并在此层上制备高质量的n型ZnO薄膜,从而得到ZnO/纳米晶金刚石异质结光电探测器件。本发明所得器件对350nm的紫外光具有明显的光电响应。相对于一般的ZnO/金刚石探测器,具有更好的pn结光电响应特性。
-
-
-
-
-
-
-
-
-