-
公开(公告)号:CN111081642A
公开(公告)日:2020-04-28
申请号:CN201911064150.8
申请日:2019-11-04
申请人: 全球能源互联网研究院有限公司 , 华北电力大学
IPC分类号: H01L23/02 , H01L23/04 , H01L23/16 , H01L23/367
摘要: 本发明提供一种压接型功率器件封装结构和封装方法,封装结构包括分体式管壳和位于分体式管壳内部的压接型功率器件;分体式管壳包括上封接件(2)和下封接件(1),所述上封接件(2)和下封接件(1)之间形成密闭腔体;压接型功率器件(5)下表面与下封接件(1)的底部固定,其上表面上封接件(2)的底部固定;分体式管壳内充斥绝缘介质。本发明采用绝缘油或者绝缘气体作为绝缘介质,能够通过绝缘介质提高了功率器件的耐压能力;上封接件和下封接件通过冷压焊接形式固定,在管壳内部形成了密封腔体,大大提高了分体式管壳的密封性能和绝缘可靠性;本发明还提高了封装结构的散热性能和散热效率。
-
公开(公告)号:CN111697079B
公开(公告)日:2024-02-06
申请号:CN202010658595.5
申请日:2020-07-09
申请人: 全球能源互联网研究院有限公司 , 国家电网有限公司 , 国网浙江省电力有限公司
摘要: 本发明涉及半导体器件技术领域,具体涉及一种SiC MOSFET器件结构。所述SiC MOSFET器件结构,包括:衬底;外延层,形成在所述衬底之上;P阱区,形成在所述外延层之内;以及形成在所述P阱区之内的两个相邻N+源区;所述N+源区的表面掺杂浓度大于内部掺杂浓度。本发明提供的SiC MOSFET器件结构,通过改变N+源区的掺杂浓度,提升N+源区的电阻,进而在提高器件的短路能力同时又能保证导通能力基本不退化。
-
公开(公告)号:CN113808924A
公开(公告)日:2021-12-17
申请号:CN202110993761.1
申请日:2021-08-27
申请人: 中国科学院微电子研究所 , 全球能源互联网研究院有限公司
IPC分类号: H01L21/04
摘要: 本发明涉及一种半导体器件的制备方法。一种半导体器件的制备方法,包括:提供具有掺杂的SiC外延片;在SiC外延片上形成第一掩膜层;对第一掩膜层进行图形化处理,曝露出第一离子注入区域;向第一离子注入区域进行离子注入,注入类型与SiC外延片的掺杂类型相同;去除第一掩膜层;去除第一掩膜层之后在SiC外延片上形成第二掩膜层;对第二掩膜层进行图形化处理,曝露出第二离子注入区域;向第二离子注入区域进行离子注入,注入类型根据半导体器件中离子注入结构的类型确定;去除第二掩膜层;激活第二离子注入区域注入的离子;制作半导体器件的其他结构。该方法旨在解决器件在雪崩击穿过程中电荷在第二注入边缘区域聚集发生击穿的问题。
-
公开(公告)号:CN113629131A
公开(公告)日:2021-11-09
申请号:CN202010386415.2
申请日:2020-05-09
申请人: 全球能源互联网研究院有限公司 , 国家电网有限公司 , 国网福建省电力有限公司厦门供电公司
摘要: 本发明提供一种分区域渐变场限环终端结构及其设计方法,设置分区域渐变场限环终端结构的各参数的初始值;基于初始值,依次对各参数值进行调整,并实时获取各场限环和有源区主结之间的电场强度,当获取的电场强度相等且均小于临界击穿电场强度,得到最优的参数值;基于最优的参数值确定分区域渐变场限环终端结构,通过调整各区域内场限环的宽度和各相邻场限环的间距,大大提高了功率半导体器件制备过程中场限环终端结构的保护效率,提高了半导体功率器件的击穿电压,增强了半导体功率器件的可靠性和稳定性。
-
公开(公告)号:CN110349839B
公开(公告)日:2021-03-12
申请号:CN201910540297.3
申请日:2019-06-21
申请人: 全球能源互联网研究院有限公司 , 国家电网有限公司 , 国网江苏省电力有限公司电力科学研究院
IPC分类号: H01L21/02 , H01L21/285
摘要: 本发明属于碳化硅制备技术领域,具体涉及一种p/n型碳化硅欧姆接触的制备方法。该方法包括对碳化硅外延片进行前清洗和预处理,然后采用原子层沉积工艺在碳化硅外延片上依次形成3TiC/SiC层、3TiC/xSiC层和TiC层,经合金化热处理后依次形成Ti3SiC2层、过渡层和TiC层,得到具有欧姆接触特性的p/n型碳化硅;本发明采用ALD,通过控制摩尔比在碳化硅外延片上形成3TiC/SiC层,经合金化热处理后形成Ti3SiC2层,可以降低界面处势垒的高度,与碳化硅外延片形成欧姆接触,该方法避免了沉积过程与碳化硅外延片中的SiC晶圆发生合金化反应,减少了碳富集和空隙等问题的出现。
-
公开(公告)号:CN111952171A
公开(公告)日:2020-11-17
申请号:CN202010627782.7
申请日:2020-07-01
申请人: 全球能源互联网研究院有限公司 , 国家电网有限公司 , 国网浙江省电力有限公司
IPC分类号: H01L21/331 , H01L29/08 , H01L29/739
摘要: 本发明提供一种基于图形化工艺制备SiC IGBT的方法及SiC IGBT,在SiC衬底表面依次形成N-漂移层、N+缓冲层和P+集电层,并对选取的键合基片进行图形化处理;采用键合工艺对所述P+集电层和处理后的键合基片进行键合,之后去除SiC衬底,或先去除SiC衬底,之后采用键合工艺对所述P+集电层和处理后的键合基片进行键合;采用减薄工艺去除部分键合基片,在N-漂移层表面形成栅极和发射极,并在P+集电层表面形成集电极,在键合前对的键合基片进行图形化处理,避免键合过程中出现键合界面会出现空洞以及应力问题,器件在流片的过程中容易被识别,同时增加了薄片的支撑能力,减少了碎片概率,提高了SiC IGBT的成品率,减小导通电阻,降低了生产成本。
-
公开(公告)号:CN111261724A
公开(公告)日:2020-06-09
申请号:CN201811453239.9
申请日:2018-11-30
申请人: 全球能源互联网研究院有限公司
IPC分类号: H01L29/872 , H01L27/02 , H01L21/329 , H01L29/16
摘要: 本发明提供了一种SiC JBS器件的布局方法,包括:在碳化硅衬底的晶面上生长外延层,并在所述外延层上划分矩形结构的有源区;在所述有源区周边布置终端保护区,在所述有源区内布置多个P型区,且所述多个P型区呈多行多列交错排列,将离子注入每个P型区,在各P型区之间布置肖特基接触区;在碳化硅衬底背面淀积欧姆接触金属层生成SiC JBS器件。本发明在SiC JBS器件中布局了多个P型区呈多行多列交错排列,保证了SiC JBS器件的反向击穿特性的同时增加了肖特基势垒区域面积,提高了导通能力。
-
公开(公告)号:CN110349839A
公开(公告)日:2019-10-18
申请号:CN201910540297.3
申请日:2019-06-21
申请人: 全球能源互联网研究院有限公司 , 国家电网有限公司 , 国网江苏省电力有限公司电力科学研究院
IPC分类号: H01L21/02 , H01L21/285
摘要: 本发明属于碳化硅制备技术领域,具体涉及一种p/n型碳化硅欧姆接触的制备方法。该方法包括对碳化硅外延片进行前清洗和预处理,然后采用原子层沉积工艺在碳化硅外延片上依次形成3TiC/SiC层、3TiC/xSiC层和TiC层,经合金化热处理后依次形成Ti3SiC2层、过渡层和TiC层,得到具有欧姆接触特性的p/n型碳化硅;本发明采用ALD,通过控制摩尔比在碳化硅外延片上形成3TiC/SiC层,经合金化热处理后形成Ti3SiC2层,可以降低界面处势垒的高度,与碳化硅外延片形成欧姆接触,该方法避免了沉积过程与碳化硅外延片中的SiC晶圆发生合金化反应,减少了碳富集和空隙等问题的出现。
-
公开(公告)号:CN108630649B
公开(公告)日:2024-08-06
申请号:CN201810712859.3
申请日:2018-06-29
申请人: 全球能源互联网研究院有限公司
摘要: 本发明提供了一种半导体器件封装结构及封装方法,该半导体器件封装结构,包括:第一电极片;第二电极片,与所述第一电极片相对设置;半导体器件芯片,设置在所述第一电极片和第二电极片之间;以及导电弹性部件,设置在所述半导体器件芯片与所述第一电极片之间和/或所述半导体器件芯片与所述第二电极片之间。该封装结构通过在半导体器件芯片与电极片之间设置导电弹性部件,通过该导电弹性部件缓冲并释放封装时施加在所述功率半导体器件芯片上的应力,有效保护功率半导体器件芯片不因局部受力过大而损坏,有效提高器件封装的可靠性,获得良好的封装和器件性能。
-
公开(公告)号:CN114242571A
公开(公告)日:2022-03-25
申请号:CN202111496268.5
申请日:2021-12-09
申请人: 全球能源互联网研究院有限公司
IPC分类号: H01L21/04
摘要: 本发明提供一种半导体结构的制备方法。所述半导体结构的制备方法包括:提供半导体衬底;在所述半导体衬底上形成第一外延层;在所述第一外延层背离所述半导体衬底的一侧表面形成扩散膜,所述扩散膜中具有扩散原子;形成所述扩散膜之后,进行退火处理以使得所述扩散原子进入所述第一外延层中,所述扩散原子适于填补所述第一外延层中的原子空位。本发明将所述扩散膜中的扩散原子导入所述第一外延层填补所述第一外延层内部的空位,在降低所述第一外延层内的深能级缺陷,达到提升载流子寿命目的同时,避免了对所述第一外延层表面产生损伤,且实施方便,降低了生产成本。
-
-
-
-
-
-
-
-
-