Abstract:
A technique for manufacturing a piezoresistive sensing structure (170) includes a number of process steps. Initially, a piezoresistive element (108) is implanted into a first side of an assembly (102,106,104A) that includes a semiconductor material (102,104A). A passivation layer (110A) is then formed on the first side of the assembly (102,106,104A) over the element (108). The passivation layer (110A) is then removed from selected areas on the first side of the assembly (102,106,104A). A first mask is then provided on the passivation layer (110A) in a desired pattern. A beam (152), which includes the element (108), is then formed in the assembly over at least a portion of the assembly (102,106,104A) that is to provide a cavity (103). The passivation layer (110A) provides a second mask, in the formation of the beam (152), that determines a width of the formed beam (152).
Title translation:SCHICHTSYSTEM MIT EINER SILIZIUMSCHICHT UND EINER PASSIVIERSCHICHT,VERFAHREN ZUR ERZEUGUNG EINER PASSIVIERSCHICHT AUF EINER SILIZIUMSCHICHT UND DEREN VERWENDUNG
Abstract:
The invention relates to a layer system comprising a silicon layer (11), at least some sections of whose surface are provided with a passivation layer (17), the latter (17) consisting of a first, at least predominantly inorganic sub-layer (14) and a second sub-layer (15). The latter (15) is composed of an organic compound comprising silicon or a similar material. The second sub-layer (15) in particular takes the form of a self-assembled monolayer. The invention also relates to a method for producing a passivation layer (17) on a silicon layer (11), whereby a first inorganic sub-layer (14) is produced on said layer (11) and a second sub-layer (15), containing an organic compound containing silicon or consisting of said compound, is produced on at least some sections of the first sub-layer (14), whereby the sub-layers form the passivation layer (17). The inventive layer system or the inventive method are particularly suitable for producing cantilever structures in silicon.
Abstract:
The present disclosure pertains to our discovery of a particularly efficient method for etching a multi-part cavity in a substrate. The method provides for first etching a shaped opening, depositing a protective layer over at least a portion of the inner surface of the shaped opening, and then etching a shaped cavity directly beneath and in continuous communication with the shaped opening. The protective layer protects the etch profile of the shaped opening during etching of the shaped cavity, so that the shaped opening and the shaped cavity can be etched to have different shapes, if desired. In particular embodiments of the method of the invention, lateral etch barrier layers and/or implanted etch stops are also used to direct the etching process. The method of the invention can be applied to any application where it is necessary or desirable to provide a shaped opening and an underlying shaped cavity having varying shapes. The method is also useful whenever it is necessary to maintain tight control over the dimensions of the shaped opening.
Abstract:
Disclosed is a method of manufacturing an integrated circuit having a substrate comprising a plurality of components and a metallization stack over said components, the metallization stack comprising a first sensing element (120) and a second sensing element (140) adjacent to the first sensing element, the method comprising depositing a moisture-impenetrable layer (150) over the metallization stack; depositing a passivation layer (510; 520) over the moisture-impenetrable layer; patterning the passivation layer and the underlying moisture-impenetrable layer such that a trench (600) is formed surrounding a region (810, 820) of the passivation layer over the first or second sensing element, the depth of said trench extending to a portion (310) of the metallization stack; depositing a layer of a further moisture-impenetrable material (700) over the resultant structure thereby filling said trench; patterning said further moisture-impenetrable material to expose a portion of the passivation layer in a region (810) above the first sensing element; and removing the exposed portion of the passivation layer to expose the first sensing element. A thus manufactured IC and article comprising such an IC are also disclosed.
Abstract:
The invention relates to a single crystal doped silicon microstructure comprising at least one functional element (2.1, 2.2) and placed in a substrate (1). Also disclosed is the method for producing said microstructure. According to the invention, the functional element (2.1, 2.2) is mechanically and electrically separated from the substrate on all sides by means of insulating gaps (5, 5a), and is connected in at least one position to a first structure (4a) of an electrically conductive layer (S) which is electrically insulated from the substrate (1) by means of an insulating layer (3). The functional element is thereby fixed in position in relation to the substrate (1) by means of said electrically conductive layer. The functional element is extracted from the substrate in such a way that the isolation gaps are present on all sides in relation to the substrate (1). The electrically conductive layer (S) is applied in such a way that it is connected to the functional element by means of contact fingers, fixing the functional element firmly in position.
Abstract:
An integrated device including one or more device drivers and a diffractive light modulator monolithically coupled to the one or more driver circuits. The one or more driver circuits are configured to process received control signals and to transmit the processed control signals to the diffractive light modulator. A method of fabricating the integrated device preferably comprises fabricating a front-end portion for each of a plurality of transistors, isolating the front-end portions of the plurality of transistors, fabricating a front-end portion of a diffractive light modulator, isolating the front-end portion of the diffractive light modulator, fabricating interconnects for the plurality of transistors, applying an open array mask and wet etch to access the diffractive light modulator, and fabricating a back-end portion of the diffractive light modulator, thereby monolithically coupling the diffractive light modulator and the plurality of transistors.
Abstract:
The invention concerns a micromechanical component comprising a substrate (17) whereon is deposited a micromechanical functional layer (15) made of a first material. The invention is characterized in that the functional layer (15) includes first and second zones (15a, 15c) which are linked by a third zone (15b; 220a,b; 320a,b; 420a-d; 520; 520a-h) made of a second material (20). At least one of the zones (15a or 15b; 220a,b; 320a,b; 420a-d; 520; 520a-h or 15c) forms part of a mobile structure (32) which is suspended above the substrate (17). The invention also concerns a method for producing such a micromechanical component.