Abstract:
Techniques are disclosed for forming transistor devices having source and drain regions with high concentrations of boron doped germanium. In some embodiments, an in situ boron doped germanium, or alternatively, boron doped silicon germanium capped with a heavily boron doped germanium layer, are provided using selective epitaxial deposition in the source and drain regions and their corresponding tip regions. In some such cases, germanium concentration can be, for example, in excess of 50 atomic % and up to 100 atomic %, and the boron concentration can be, for instance, in excess of 1E20 cm -3 . A buffer providing graded germanium and/or boron concentrations can be used to better interface disparate layers. The concentration of boron doped in the germanium at the epi-metal interface effectively lowers parasitic resistance without degrading tip abruptness. The techniques can be embodied, for instance, in planar or non-planar transistor devices.
Abstract:
The present disclosure relates to the fabrication of microelectronic devices having at least one negative differential resistance device formed therein. In at least one embodiment, the negative differential resistance devices may be formed utilizing quantum wells. Embodiments of negative differential resistance devices of present description may achieve high peak drive current to enable high performance and a high peak-to-valley current ratio to enable low power dissipation and noise margins, which allows for their use in logic and/or memory integrated circuitry.
Abstract:
A microelectronic device having a functional metal oxide channel may be fabricated on a microelectronic substrate that can be utilized in very large scale integration, such as a silicon substrate, by forming a buffer transition layer between the microelectronic substrate and the functional metal oxide channel. In one embodiment, the microelectronic device may be a microelectronic transistor with a source structure and a drain structure formed on the buffer transition layer, wherein the source structure and the drain structure abut opposing sides of the functional metal oxide channel and a gate dielectric is disposed between a gate electrode and the functional metal oxide channel. In another embodiment, the microelectronic device may be a two-terminal microelectronic device.
Abstract:
Embodiments of the present disclosure are directed toward an integrated circuit (IC) die. In embodiments, an IC die may include a semiconductor substrate and a buffer layer disposed over the semiconductor substrate. The buffer layer may have a plurality of openings formed therein. In embodiments, the IC die may further include a plurality of group III-Nitride structures. Individual group III-Nitride structures of the plurality of group III-Nitride structures may include a lower portion disposed in a respective opening of the plurality of openings and an upper portion disposed over the respective opening. In embodiments, the upper portion may include a base extending radially from sidewalls of the respective opening over a surface of the buffer layer to form a perimeter around the respective opening. Other embodiments may be described and/or claimed.
Abstract:
III-N semiconductor heterostructures including a raised III-N semiconductor structures with inclined sidewall facets are described. In embodiments, lateral epitaxial overgrowth favoring semi-polar inclined sidewall facets is employed to bend crystal defects from vertical propagation to horizontal propagation. In embodiments, arbitrarily large merged III-N semiconductor structures having low defect density surfaces may be overgrown from trenches exposing a (100) surface of a silicon substrate. III-N devices, such as III-N transistors, may be further formed on the raised III-N semiconductor structures while silicon-based transistors may be formed in other regions of the silicon substrate.
Abstract:
Techniques related to III-N transistors having enhanced breakdown voltage, systems incorporating such transistors, and methods for forming them are discussed. Such transistors include a hardmask having an opening over a substrate, a source, a drain, and a channel between the source and drain, and a portion of the source or the drain disposed over the opening of the hardmask.
Abstract:
An embodiment includes a III-V material based device, comprising: a first III-V material based buffer layer on a silicon substrate; a second III-V material based buffer layer on the first III-V material based buffer layer, the second III-V material including aluminum; and a III-V material based device channel layer on the second III-V material based buffer layer. Another embodiment includes the above subject matter and the first and second III-V material based buffer layers each have a lattice parameter equal to the III-V material based device channel layer. Other embodiments are included herein.
Abstract:
An apparatus including a semiconductor body including a channel region and junction regions disposed on opposite sides of the channel region, the semiconductor body including a first material including a first band gap; and a plurality of nanowires including a second material including a second band gap different than the first band gap, the plurality of nanowires disposed in separate planes extending through the first material so that the first material surrounds each of the plurality of nanowires; and a gate stack disposed on the channel region. A method including forming a plurality of nanowires in separate planes above a substrate, each of the plurality of nanowires including a material including a first band gap; individually forming a cladding material around each of the plurality of nanowires, the cladding material including a second band gap; coalescing the cladding material; and disposing a gate stack on the cladding material.