摘要:
In the laminated and sintered ceramic circuit board according to the present invention, at least a portion of the inplane conductor is fine-lined. Nevertheless, as described above, by means of the configuration that the shape of the cross-section of the fine-lined inplane conductor is trapezoid, and the height (a), the length (c) of the lower base and the length (d) of the upper base of the trapezoidal cross-section, and the interval (b) between the lower bases of the trapezoidal cross-section of the inplane conductors adjacent in a plane parallel to the principal surfaces of the board meet a certain relation, problems such as frequent occurrences of open of wiring (disconnection) and decrease in reliability under high temperature and high humidity environment can be suppressed. Namely, the present invention provides a laminated ceramic circuit board with low open failure rate, short-circuit failure rate and high reliability against high temperature and high humidity, in spite of its fine-lined wiring layer. In addition, the present invention provides a fast, downsized and short-in-height (thin) semiconductor package with high reliability by using such a circuit board.
摘要:
A method for manufacturing a piezoelectric /electrostrictive element includes a step of subjecting the piezoelectric/electrostrictive film to a heat treatment and a polarization treatment after the film is allowed to stand until the value of an electric constant has converged after the heat treatment. The piezoelectric/electrostrictive element manufactured in this method has small stress remaining in the piezoelectric/electrostrictive film, and predetermined performance regarding, for example, a displacement amount, a displacement-generating force, and an electric power efficiency (consumed electric power) as a piezoelectric/electrostrictive element (piezoelectric/electrostrictive film) is never spoiled.
摘要:
A substrate for a light-emitting diode comprising a metal base with a thickness of a predetermined value or more is constituted so that the thickness of a top conductor for an electrical connection with a light-emitting diode (LED) in a predetermined range falls within a predetermined range and the thickness of an insulation layer which electrically insulates the metal base and the top conductor and the thickness of the top conductor meet a predetermined relation. Thereby, a substrate for a light-emitting diode which can show a high heat dissipation capacity by achieving a low thermal resistance as the total thermal resistance of the whole substrate without reducing insulation reliability and high-humidity reliability of the substrate is provided.