摘要:
There is provided a Cu bonding wire having a Pd coating layer on a surface thereof, that improves bonding reliability of a ball bonded part in a high-temperature and high-humidity environment and is suitable for on-vehicle devices. The bonding wire for a semiconductor device includes a Cu alloy core material and a Pd coating layer formed on a surface of the Cu alloy core material, and the bonding wire contains In of 0.011 to 1.2% by mass and has the Pd coating layer of a thickness of 0.015 to 0.150 µm. With this configuration, it is able to increase the bonding longevity of a ball bonded part in a high-temperature and high-humidity environment, and thus to improve the bonding reliability. When the Cu alloy core material contains one or more elements of Pt, Pd, Rh and Ni in an amount, for each element, of 0.05 to 1.2% by mass, it is able to increase the reliability of a ball bonded part in a high-temperature environment of 175°C or more. When an Au skin layer is further formed on a surface of the Pd coating layer, wedge bondability improves.
摘要:
There is provided a bonding wire for a semiconductor device including a coating layer having Pd as a main component on a surface of a Cu alloy core material and a skin alloy layer containing Au and Pd on a surface of the coating layer, the bonding wire further improving 2nd bondability on a Pd-plated lead frame and achieving excellent ball bondability even in a high-humidity heating condition. The bonding wire for a semiconductor device including the coating layer having Pd as a main component on the surface of the Cu alloy core material and the skin alloy layer containing Au and Pd on the surface of the coating layer has a Cu concentration of 1 to 10 at% at an outermost surface thereof and has the core material containing either or both of Pd and Pt in a total amount of 0.1 to 3.0% by mass, thereby achieving improvement in the 2nd bondability and excellent ball bondability in the high-humidity heating condition. Furthermore, a maximum concentration of Au in the skin alloy layer is preferably 15 at% to 75 at%.
摘要:
Bonding wire for semiconductor device use where both leaning failures and spring failures are suppressed by (1) in a cross-section containing the wire center and parallel to the wire longitudinal direction (wire center cross-section), there are no crystal grains with a ratio a/b of a long axis "a" and a short axis "b" of 10 or more and with an area of 15 µm 2 or more ("fiber texture"), (2) when measuring a crystal direction in the wire longitudinal direction in the wire center cross-section, the ratio of crystal direction with an angle difference with respect to the wire longitudinal direction of 15° or less is, by area ratio, 10% to less than 50%, and (3) when measuring a crystal direction in the wire longitudinal direction at the wire surface, the ratio of crystal direction with an angle difference with respect to the wire longitudinal direction of 15° or less is, by area ratio, 70% or more. During the drawing step, a drawing operation with a rate of reduction of area of 15.5% or more is performed at least once. The final heat treatment temperature and the pre-final heat treatment temperature are made predetermined ranges.
摘要:
Bonding wire for semiconductor device use where both leaning failures and spring failures are suppressed by (1) in a cross-section containing the wire center and parallel to the wire longitudinal direction (wire center cross-section), there are no crystal grains with a ratio a/b of a long axis "a" and a short axis "b" of 10 or more and with an area of 15 µm 2 or more ("fiber texture"), (2) when measuring a crystal direction in the wire longitudinal direction in the wire center cross-section, the ratio of crystal direction with an angle difference with respect to the wire longitudinal direction of 15° or less is, by area ratio, 50% to 90%, and (3) when measuring a crystal direction in the wire longitudinal direction at the wire surface, the ratio of crystal direction with an angle difference with respect to the wire longitudinal direction of 15° or less is, by area ratio, 50% to 90%. During the drawing steep, a drawing operation with a rate of reduction of area of 15.5% or more is performed at least once. The final heat treatment temperature and the pre-final heat treatment temperature are made predetermined ranges.
摘要:
There is provided a bonding wire for a semiconductor device including a coating layer having Pd as a main component on a surface of a Cu alloy core material and a skin alloy layer containing Au and Pd on a surface of the coating layer, the bonding wire further improving 2nd bondability on a Pd-plated lead frame and achieving excellent ball bondability even in a high-humidity heating condition. The bonding wire for a semiconductor device including the coating layer having Pd as a main component on the surface of the Cu alloy core material and the skin alloy layer containing Au and Pd on the surface of the coating layer has a Cu concentration of 1 to 10 at% at an outermost surface thereof and has the core material containing a metallic element of Group 10 of the Periodic Table of Elements in a total amount of 0.1 to 3.0% by mass, thereby achieving improvement in the 2nd bondability and excellent ball bondability in the high-humidity heating condition. Furthermore, a maximum concentration of Au in the skin alloy layer is preferably 15 at% to 75 at%.
摘要:
There is provided a bonding wire for a semiconductor device, the bonding wire including a Cu alloy core material and a Pd coating layer formed on a surface thereof, achieving simultaneously improvement in bonding reliability of a ball bonded part in HTS at 175°C to 200°C and an strength ratio (= ultimate strength/0.2% offset yield strength) of 1.1 to 1.6. Containing one or more of Ni, Zn, Rh, in, Ir, and Pt in the wire in a total amount of 0.03 to 2% by mass improves the bonding reliability of the ball bonded part in HTS, and furthermore, making an orientation proportion of a crystal orientation angled at 15 degrees or less to a wire longitudinal direction among crystal orientations in the wire longitudinal direction 50% or more when measuring crystal orientations on a cross-section of the core material in a direction perpendicular to a wire axis of the bonding wire, and making an average crystal grain size in the cross-section of the core material in the direction perpendicular to the wire axis of the bonding wire 0.9 to 1.3 µm provides a strength ratio of 1.6 or less.
摘要:
The present invention has as its theme the provision of Cu pillars on a semiconductor chip and electrical connection of the same during which able to enlarge a height/diameter ratio of the Cu pillars, improve the productivity, and raise the height of the Cu pillars and thereby improve the reliability of the Cu pillars compared with the method of forming Cu pillars by plating. The present invention solves this problem by forming the material for the Cu pillars as cylindrical preforms in advance and connecting these cylindrical preforms to electrodes on the semiconductor chip to form Cu pillars. Due to this, it becomes possible to make the height/diameter ratio of the Cu pillars 2.0 or more. Since electroplating is not used, the time required for production of the Cu pillars is short and the productivity can be improved. Further, the height of the Cu pillars can be raised to 200 µm or more, so these are also preferable for moldunderfill. The components can be freely adjusted, so it is possible to easily design the alloy components to obtain highly reliable Cu pillars.
摘要:
There is provided a Cu bonding wire having a Pd coating layer on a surface thereof, that improves bonding reliability of a ball bonded part in a high-temperature and high-humidity environment and is suitable for on-vehicle devices. The bonding wire for a semiconductor device includes a Cu alloy core material and a Pd coating layer formed on a surface thereof, and the boding wire contains one or more elements of As, Te, Sn, Sb, Bi and Se in a total amount of 0.1 to 100 ppm by mass. With this configuration, it is able to increase the bonding longevity of a ball bonded part in a high-temperature and high-humidity environment, and thus to improve the bonding reliability. When the Cu alloy core material further contains one or more of Ni, Zn, Rh, In, Ir, Pt, Ga and Ge in an amount, for each, of 0.011 to 1.2% by mass, it is able to increase the reliability of a ball bonded part in a high-temperature environment of 170°C or more. When an alloy skin layer containing Au and Pd is further formed on a surface of the Pd coating layer, wedge bondability improves.
摘要:
There is provided a Cu bonding wire having a Pd coating layer on a surface thereof, that improves bonding reliability of a ball bonded part in a high-temperature, high-humidity environment and is suitable for on-vehicle devices. The bonding wire for a semiconductor device includes a Cu alloy core material and a Pd coating layer formed on a surface of the Cu alloy core material, and the bonding wire contains Ga and Ge of 0.011 to 1.2% by mass in total. With this configuration, it is able to increase bonding longevity of the ball bonded part in the high-temperature, high-humidity environment, and thus to improve the bonding reliability. The thickness of the Pd coating layer is preferably 0.015 to 0.150 µm. When the bonding wire further contains one or more elements of Ni, Ir, and Pt in an amount, for each element, of 0.011 to 1.2% by mass, it is able to improve the reliability of the ball bonded part in a high-temperature environment at 175°C or more. When an alloy skin layer containing Au and Pd is further formed on a surface of the Pd coating layer, wedge bondability improves.