Abstract:
A pulsive noise removing apparatus comprises a subtracting circuit (35) receiving one input thereto a stereo composite signal directly from a delay circuit (31). A stereo switching signal is generated as a function of a stereo pilot signal included in the stereo composite signal and a cancel signal of the same level, the same frequency and the same phase as those of the stereo pilot signal is generated as a function of the stereo switching signal. A gate (67) is interposed between the output of the cancel signal generating circuit (65) and the other input of the subtracting circuit and the gate is interrupted responsive to detection of a pulsive noise included in the composite signal. The pulsive noise is removed due to interruption of the gate and the stereo pilot signal is prevented from appearing at the output of the subtracting circuit irrespective of conduction or interruption of the gate.
Abstract:
A pulsive noise removing apparatus comprises a subtracting circuit (35) receiving one input thereto a stereo composite signal directly from a delay circuit (31). A stereo switching signal is generated as a function of a stereo pilot signal included in the stereo composite signal and a cancel signal of the same level, the same frequency and the same phase as those of the stereo pilot signal is generated as a function of the stereo switching signal. A gate (67) is interposed between the output of the cancel signal generating circuit (65) and the other input of the subtracting circuit and the gate is interrupted responsive to detection of a pulsive noise included in the composite signal. The pulsive noise is removed due to interruption of the gate and the stereo pilot signal is prevented from appearing at the output of the subtracting circuit irrespective of conduction or interruption of the gate.
Abstract:
Resin encapsulated chip-scale package in which contact pads (13) of a chip (12) are connected to respective conductive traces (11A-11D) that are formed on an insulating layer (AF) on the active face of the chip. Heat removal from the device is improved by providing a conductive pad (11D) on the insulating layer.
Abstract:
A semiconductor chip (16) is moulded in insulating resin (13). A heat radiation electrode (15) is exposed at the back surface of the insulating resin (13), and a metal plate (23) is affixed to this heat radiation electrode (15). The back surface of this metal plate (23) and the back surface of a first supporting member (11) are substantially within a same plane, so that it is readily affixed to a second supporting member (24). Accordingly, the heat generated by the semiconductor chip can be efficiently dissipated via the heat radiation electrode (15), the metal plate (23) and the second supporting member (24).
Abstract:
A heat radiation electrode (15) is exposed from the back surface of an insulating resin (13), and a metal plate (23) is affixed to the heat radiation electrode (15). The back surface of this metal plate (23) and the back surface of a first supporting member (11) are substantially within a same plane, so that it is readily affixed to a second supporting member (24). Accordingly, the heat generated by the semiconductor chip can be efficiently dissipated via the heat radiation electrode (15), the metal plate (23) and the second supporting member (24).
Abstract:
There are provided the steps of preparing a conductive foil and then forming a plurality of conductive paths by forming isolation trenches, which are shallower than a thickness of the conductive foil, in the conductive foil except at least areas serving as the conductive paths, fixing respective photo semiconductor chips (65) to desired conductive paths, molding a light transparent resin (67) serving as a lens to cover respective photo semiconductor chips (65) individually and to fill the isolation trenches, and removing the conductive foil on the side on which the isolation trenches are not provided. Therefore, a light irradiating device (68), in which back surfaces of the conduction paths can be connected to the outside to thus eliminate through holes and which has the good radiation characteristic, can be implemented.
Abstract:
A semiconductor device is provided wherein conductive paths 40, formed of crystal that grows better along the X-Y axis than along the Z axis, are embedded in an insulating resin 44, and the back surface of the conductive path 40 is exposed through the insulating resin 44 and sealed. With this arrangement, fractures of the conductive paths 40 embedded in the insulating resin 44 are suppressed.
Abstract:
After a isolation trench is formed in a conductive foil 70, insulating resin 50 is coated on the conducting foil 70 serving as a supporting board. The conductive foil 70 is turned upside down. Using the insulating resin 50 as another supporting board, the conductive foil is ground so that it is separated into the conductive passages. Thus, the mounting board can be constructed and manufactured using necessary and minimum material. The mounting board which can prevent the conductive passages from coming off can be realized by embedding the conductive passages 51 in the insulating resin to curve the side wall of each conductive passage 51 and/or make a visor coated on the conductive passage.
Abstract:
A heat radiation electrode (15) is exposed from the back surface of an insulating resin (13), and a metal plate (23) is affixed to this heat radiation electrode (15). The back surface of this metal plate (23) and the back surface of a first supporting member (11) are substantially within a same plane, so that it is readily affixed to a second supporting member (24). Accordingly, the heat generated by the semiconductor chip can be efficiently dissipated via the heat radiation electrode (15), the metal plate (23) and the second supporting member (24).