摘要:
A conductive bump assembly may include a passive substrate. The conductive bump assembly may also include a conductive bump pad supported by the passive substrate and surrounded by a first passivation layer opening. The conductive bump assembly may further include a second passivation layer opening on the passive substrate. The second passivation layer opening may be merged with the first passivation layer opening surrounding the conductive bump pad proximate an edge of the passive substrate. The conductive bump assembly may also include a conductive bump on the conductive bump pad.
摘要:
The present invention relates to a composite, a high-frequency circuit substrate prepared therefrom and a process for preparing the same. Such composite comprises (1) from 20 to 70 parts by weight of a thermosetting mixture, comprising (A) a thermosetting resin based on polybutadiene or a copolymer resin of polybutadiene and styrene having a molecular weight of 11,000 or less, being composed of carbon and hydrogen elements and containing 60% or more of vinyl groups, and (B) an ethylene-propylene rubber having a weight-average molecular weight of greater than 100,000 and less than 150,000 and a number-average molecular weight of greater than 60,000 and less than 100,000 and being in a solid state at room temperature; (2) from 10 to 60 parts by weight of a glass fiber cloth; (3) from 0 to 70 parts by weight of a powder filler; and (4) from 1 to 3 parts by weight of a curing initiator. The composite of the present invention has good solvent solubility and good process operability. The high-frequency circuit substrate made by using the composite has good high frequency dielectric properties and better thermal oxidative aging performance.
摘要:
Method for pore sealing a porous substrate, comprising: forming a continuous monolayer of a polyimide precursor on a liquid surface, transferring said polyimide precursor monolayer onto the porous substrate with the Langmuir-Blodgett technique, and imidization of the transferred polyimide precursor monolayers, thereby forming a polyimide sealing layer on the porous substrate. Porous substrate having at least one surface on which a sealing layer is provided to seal pores of the substrate, wherein the sealing layer is a polyimide having a thickness of a few monolayers and wherein there is no penetration of the polyimide into the pores.
摘要:
It is intended to provide a resin composition that suppresses the thermal expansion of a printed circuit board more than ever and also prevents the bleedout of substances from the printed circuit board, while maintaining a high glass transition temperature. The resin composition of the present invention contains an alkenyl-substituted nadimide, a maleimide compound, and an epoxy-modified cyclic silicone compound.
摘要:
A method for preparing an adhesive-free polyimide flexible printed circuit board is provided. The method includes the following steps: 1) placing a polyimide thin film into a low vacuum environment, and treating the polyimide thin film using plasma produced by capacitively coupled discharge of an organic amine; 2) placing the polyimide thin film obtained in step 1) into a low vacuum environment, and pretreating the polyimide thin film using plasma formed by capacitively coupled discharge of a nitrogen gas bubbled through a metal salt solution; 3) pre-plating the polyimide thin film obtained in step 2) using vacuum sputtering or chemical plating so as to obtain a dense copper film with a thickness of less than 100 nm; and 4) thickening the copper film to a required thickness by means of an electroplating method. The method not only eliminates an adhesive, but also can simplify the process, reduce labor investment, decrease costs, and cut down environmental pollution. This method can be used for manufacturing an ultrathin adhesive-free flexible printed circuit board.
摘要:
A substrate for a printed circuit board according to an embodiment of the present invention includes a base film and a metal layer disposed on at least one of surfaces of the base film. In the substrate for a printed circuit board, an amount of nitrogen present per unit area, the amount being determined on the basis of a peak area of a Nls spectrum in XPS analysis of a surface of the base film exposed after removal of the metal layer by etching with an acidic solution, is 1 atomic% or more and 10 atomic% or less.
摘要:
Apparatus, including a flexible insulating substrate, having a first side and a second side, rolled about an axis parallel to the substrate. The apparatus also includes a first conducting spiral that is right-handed relative to a normal to the substrate, and a second conducting spiral that is left-handed relative to the normal, formed on the first side of the substrate. The first conducting spiral has a first initial termination and a first final termination, the second conducting spiral has a second initial termination and a second final termination, the spirals have a displacement therebetween, with a preset magnitude so that when the substrate is rolled about the axis the first initial termination aligns with the second initial termination. The apparatus also has a via penetrating the substrate from the first side to the second side so as to interconnect the first initial termination and the second initial termination.
摘要:
It is intended to provide a resin composition that suppresses the thermal expansion of a printed circuit board more than ever and also prevents the bleedout of substances from the printed circuit board, while maintaining a high glass transition temperature. The resin composition of the present invention contains an alkenyl-substituted nadimide, a maleimide compound, and an epoxy-modified cyclic silicone compound.
摘要:
Depicted embodiments are directed to an Application Specific Electronics Packaging (“ASEP”) system, which enables the manufacture of additional products using reel to reel (68a, 68b) manufacturing processes as opposed to the “batch” processes used to currently manufacture electronic products and MIDs. Through certain ASEP embodiments, it is possible to integrate connectors, sensors, LEDs, thermal management, antennas, RFID devices, microprocessors, memory, impedance control, and multi-layer functionality directly into a product.