Abstract:
A method of a single wafer wet/dry cleaning apparatus comprising: a transfer chamber having a wafer handler contained therein; a first single wafer wet cleaning chamber directly coupled to the transfer chamber; and a first single wafer ashing chamber directly coupled to the transfer chamber.
Abstract:
A toroidal plasma source (28) within a substrate processing chamber (10). The toroidal plasma source forms a poloidal plasma with theta symmetry. The poloidal plasma current is essentially parallel to a surface of the plasma generating structure, thus reducing sputtering erosion of the inner walls. The plasma current is similarly essentially parallel to a process surface (32) of a substrate (34) within the chamber. In a further embodiment, a shaped member (66) between the substrate and the plasma source controls the plasma density in a selected fashion to enhance plasma processing uniformity.
Abstract:
There is described apparatus and methods for transporting and processing substrates including wafers as to efficiently produce at reasonable costs improved throughput as compared to systems in use today. A key element is the use of a transport chamber along the sides of processing chambers for feeding substrates into a controlled atmosphere through a load lock and then along a transport chamber as a way of reaching processing chambers and then out of the controlled atmosphere following processing in the processing chambers.
Abstract:
A toroidal plasma source (28) within a substrate processing chamber (10). The toroidal plasma source forms a poloidal plasma with theta symmetry. The poloidal plasma current is essentially parallel to a surface of the plasma generating structure, thus reducing sputtering erosion of the inner walls. The plasma current is similarly essentially parallel to a process surface (32) of a substrate (34) within the chamber. In a further embodiment, a shaped member (66) between the substrate and the plasma source controls the plasma density in a selected fashion to enhance plasma processing uniformity.
Abstract:
There is described apparatus and methods for transporting and processing substrates including wafers as to efficiently produce at reasonable costs improved throughput as compared to systems in use today. A linear transport chamber includes linear tracks and robot arms riding on the linear tracks to linearly transfer substrates along the sides of processing chambers for feeding substrates into a controlled atmosphere through a load lock and then along a transport chamber as a way of reaching processing chambers.
Abstract:
There is described apparatus and methods for transporting and processing substrates including wafers as to efficiently produce at reasonable costs improved throughput as compared to systems in use today. A key element is the use of a transport chamber along the sides of processing chambers for feeding substrates into a controlled atmosphere through a load lock and then along a transport chamber as a way of reaching processing chambers and then out of the controlled atmosphere following processing in the processing chambers.
Abstract:
There is described apparatus and methods for transporting and processing substrates including wafers as to efficiently produce at reasonable costs improved throughput as compared to systems in use today. A key element is the use of a transport chamber along the sides of processing chambers for feeding substrates into a controlled atmosphere through a load lock and then along a transport chamber as a way of reaching processing chambers and then out of the controlled atmosphere following processing in the processing chambers.
Abstract:
There is described apparatus and methods for transporting and processing substrates including wafers as to efficiently produce at reasonable costs improved throughput as compared to systems in use today. A key element is the use of a transport chamber along the sides of processing chambers for feeding substrates into a controlled atmosphere through a load lock and then along a transport chamber as a way of reaching processing chambers and then out of the controlled atmosphere following processing in the processing chambers.
Abstract:
A method of a single wafer wet/dry cleaning apparatus comprising: a transfer chamber having a wafer handler contained therein; a first single wafer wet cleaning chamber directly coupled to the transfer chamber; and a first single wafer ashing chamber directly coupled to the transfer chamber.
Abstract:
The present invention generally provides a high throughput substrate processing system that is used to form one or more regions of a solar cell device. In one configuration of a processing system, one or more solar cell passivating or dielectric layers are deposited and further processed within one or more processing chambers contained within the high throughput substrate processing system. The processing chambers may be, for example, plasma enhanced chemical vapor deposition (PECVD) chambers, low pressure chemical vapor deposition (LPCVD) chambers, atomic layer deposition (ALD) chambers, physical vapor deposition (PVD) or sputtering chambers, thermal processing chambers (e.g., RTA or RTO chambers), substrate reorientation chambers (e.g., flipping chambers) and/or other similar processing chambers.