Abstract:
Disclosed herein is a floating recovery device for underwater equipment. The device includes a recovery body partitioned into a first compartment, a second compartment, and a third compartment by a partition wall, first and second pressure tanks installed in the first and second compartments, respectively, first and second striking parts fastened to the first and second pressure tanks, respectively, to strike the first and second pressure tanks, first and second actuators wirelessly actuating the first and second striking parts, respectively, and a buoyancy generator installed in the third compartment, and inflated by high-pressure gas introduced from the first and second pressure tanks, thus generating buoyancy. Such a configuration allows the pressure tank to be wirelessly struck for the purpose of supplying high-pressure gas to the buoyancy generator and floating the underwater equipment in the event of the loss of the underwater equipment.
Abstract:
Nonvolatile memory devices and methods of fabricating the same, include, forming a transistor in a first region of a substrate, forming a contact which is connected to the transistor, forming an information storage portion, which is disposed two-dimensionally, in a second region of the substrate, sequentially forming a stop film and an interlayer insulating film which cover the contact and the information storage portion, forming a first trench, which exposes the stop film, on the contact, and forming a second trench which extends through the stop film to expose the contact, wherein a bottom surface of the first trench is lower than a bottom surface of the information storage portion.
Abstract:
Nonvolatile memory devices and methods of fabricating the same, include, forming a transistor in a first region of a substrate, forming a contact which is connected to the transistor, forming an information storage portion, which is disposed two-dimensionally, in a second region of the substrate, sequentially forming a stop film and an interlayer insulating film which cover the contact and the information storage portion, forming a first trench, which exposes the stop film, on the contact, and forming a second trench which extends through the stop film to expose the contact, wherein a bottom surface of the first trench is lower than a bottom surface of the information storage portion.
Abstract:
There is provided a source driver capable of controlling the timing of source line driving signals in a liquid crystal display device. The source driver includes a plurality of output circuits, each output circuit including an output buffer and a switch. The output buffer amplifies an analog image signal, and the switch outputs the amplified analog image signal as a source line driving signal in response to a control signal. The source driver further comprises a control circuit for generating the control signal, the control circuit comprising: a delay circuit delaying a switch signal and generating a delayed switch signal; and a multiplexer selecting one of the switch signal and the delayed switch signal in response to a selection signal and outputting the selected signal as the control signal.
Abstract:
A magnetic body structure including: a magnetic layer pattern; and a conductive pattern including a metallic glass alloy and covering at least a portion of the magnetic body structure.
Abstract:
Provided is a magnetic memory device and a method of forming the same. A first magnetic conductive layer is disposed on a substrate. A first tunnel barrier layer including a first metallic element and a first non-metallic element is disposed on the first magnetic conductive layer. A second magnetic conductive layer is disposed on the first tunnel barrier layer. A content of an isotope of the first metallic element having a non-zero nuclear spin quantum number is lower than a natural state.
Abstract:
A phase change material layer includes antimony (Sb) and at least one of indium (In) and gallium (Ga). A phase change memory device includes a storage node including a phase change material layer and a switching device connected to the storage node. The phase change material layer includes Sb and at least one of In and Ga.
Abstract:
In a method of manufacturing bonding probes, bump layer patterns are formed on terminals of a multi-layered substrate. A first wetting layer pattern having a wettability with respect to a solder paste, and a non-wetting layer pattern having a non-wettability with respect to the solder paste are formed on the bump layer patterns. The solder paste is formed on the first wetting layer and the non-wetting layer pattern. The probes, which make contact with an object, are bonded to the solder paste. The solder paste on the non-wetting layer pattern reflows along a surface of the first wetting layer pattern to form an adhesive layer on the first wetting layer pattern. Thus, a sufficient amount of the solder paste, which is required for bonding the probes, may be provided to firmly bond the probes.
Abstract:
A source driver output circuit of a thin film transistor (TFT) liquid crystal display (LCD) includes first through n-th voltage generators, first through n-th switching portions, first through n-th sub switching portions, and a switching circuit. The voltage generators receive first through n-th corresponding input voltages and generate first through n-th sub input voltages. The switching portions generate the sub input voltages as first through n-th corresponding output voltages when activated, or cut off the sub input voltages when deactivated. The sub switching portions connect predetermined share lines to the output voltages when activated, or cut off the predetermined share lines when deactivated. The switching circuit maintains each of the share line voltages equally at an intermediate voltage level that is between the share line voltages. Therefore, the slew rate of a signal input to the panel from the source driver can be improved, and current consumption in the source driver can be reduced.
Abstract:
A phase change memory device includes a switch and a storage node connected to the switch. The storage node includes a first electrode, a phase change layer and a second electrode. The phase change layer is formed of an InSbTe compound doped with Ge. In a method of operating a phase change memory including a switch and a storage node, the switch is maintained in an on state, and a first current is applied to the storage node.