Abstract:
A high silicon steel strip having excellent magnetic properties and good workability, and having a composition consisting of 4-10% by weight of silicon and the remainder being substantially iron and incidental impurities is produced by cooling super rapidly the high silicon steel melt on a cooling substrate to form a thin strip having micro-structure comprising very fine crystal grains having substantially no ordered lattice.
Abstract:
This invention relates to a process for preparing a magnetic disk, which comprises (a) subjecting a substrate having an anodized aluminum film to mirror surface-finishing, (b) widening pores of the anodized aluminum film by chemical dissolution treatment so that the total area of pores becomes from 20 to 80% of the entire surface area, thereby retaining crystalline alumina of the anodized aluminum film extruded after the chemical dissolution treatment, and (c) coating the resultant substrate with a magnetic continuous thin film.
Abstract:
A substrate for a magnetic recording disk, made of anodized aluminum having its pores packed with a non magnetic material and having been subjected to polishing followed by an etching treatment to form a finely roughened surface due to preferential etching of either the aluminum or the non magnetic material.
Abstract:
A novel thin ribbon of semiconductor has a polycrystalline structure composed more than 50% of grains having a grain size of more than 5 .mu.m, a thickness of 5 to 200 .mu.m, a sufficient flexibility to be windable on a pipe having a diameter of 34 mm, and malleability. The semiconductor is composed of p-type, i-type or n-type semiconductor material, and may be a two-layer composite formed of at least two elements so as to form a p-n type junction. The composition of the semiconductor material consists of pure silicon or silicon with an additional impurity element for improving the properties of the semiconductor, the additional impurity element being selected from the group consisting of hydrogen, phosphorus, sulfur, oxygen, boron, arsenic, tellurium, tin, selenium, aluminum, gallium, indium, chromium, silver, iron and bismuth. A method of manufacturing a thin ribbon of a two-layer composite of semiconductor material is also disclosed. The flexible thin ribbon of semiconductor is available for use as/or in a semiconductor electronic device.
Abstract:
A method for manufacturing a thin and flexible ribbon wafer of semiconductor material such as germanium, silicon, selenium, tellurium, PbS, InSb, ZnTe, PbSe, InAs, InP, GaSb, PbTe, ZnS, Bi.sub.2 Te.sub.3, and mixtures thereof comprises melting the semiconductor material at a temperature within the range from a melting point thereof to 300.degree. C. above the melting point to form a uniform melt; ejecting under a pressure the melt through a nozzle against a cooling surface of a moving substrate to cool very rapidly a jet flow of the melt at a cooling rate of 1,000.degree. C. to 1,000,000.degree. C./sec to form the ribbon type thin and flexible wafer of fine and compact microscopic structure having a large mechanical strength and an excellent electrical property. It is possible to add to the melt various additives as fluxes or impurities such as B, P, BP, Sb Sn, As, B, P, Sb, In, Al and alloys intermetallic compounds, and conjugates thereof. The thin ribbon wafer as grown is preferably heated at a temperature from within the range 500.degree. C. to the melting point for a time within the range from 0.1 second to one week. The invention also provides a thin and flexible ribbon wafer of semiconductor material manufactured by the above mentioned process.
Abstract:
A method for manufacturing a thin and flexible ribbon of superconductor material such as V.sub.3 Sn, V.sub.3 Ge, V.sub.3 Si, Nb.sub.3 Sn, Nb.sub.3 Ge, Nb.sub.3 Si and La-Au having a fine and compact microscopic structure comprises heating raw superconductor material at a temperature within the range between its melting point and 300.degree. C. above the melting point to form a melt having suitable wettability and viscosity; ejecting the melt through a nozzle under a pressure within the range from 0.01 to 1.5 atm. against a cooling surface of a moving substrate such as a rotating drum; and cooling instantaneously and very rapidly a jet flow of the melt on the cooling surface at a cooling rate of 1,000.degree. C. to 1,000,000.degree. C./sec. In order to manufacture the thin elongated ribbon of excellent configuration it is preferable to effect the cooling in a reduced atmosphere. The invention also provides the thin and flexible ribbon processed by the above mentioned process. When an intermetallic compound such as Nb-Si, Nb-Sn, Nb-Ge, V-Si, V-Sn and V-Ge is used as the raw superconductor material a thin and flexible ribbon of superconductor material having essentially a crystalline structure is formed. When La.sub.1-x (Au.sub.y Cu.sub.1-y).sub.x, wherein x>0.9, 0.ltoreq.y.ltoreq.1 is used as the raw superconductor material it is possible to obtain a thin and flexible ribbon of superconductor material having essentially a fine and compact crystalline structure mixed with amorphous of 10 to 90%.
Abstract:
An electric signal transmission transducer employing a ferromagnetic amorphous ribbon and especially an electric signal transmission element and system and an electroacoustic signal conversion system using a ferromagnetic amorphous ribbon. The transmission transducer also provides for applying a magnetic field to the ferromagnetic amorphous ribbon for controlling the electric signal transmission or delay time. Also shown are the electric and magnetic characteristics of ferromagnetic amorphous ribbons after various heat treatments in various magnetic fields.
Abstract:
A method of manufacturing a thin ribbon of magnetic material having a high permeability and excellent flexibility and workability comprising the combination of steps ofmelting a magnetic material consisting of essentially of by weight 4-7% of aluminum, 8-11% of silicon and the remainder substantially iron and inevitable impurities at a temperature of between a melting point and a temperature not exceeding 300.degree. C. from the melting point, and necessary subingredient of less than 7%,ejecting thus obtained melt under a pressure of 0.01-1.5 atm. through a nozzle onto a moving or rotating cooling substrate,cooling super-rapidly the melt on the rotating surface of said cooling substrate at a cooling rate of 10.sup.3 -10.sup.6 .degree. C./sec so as to have a high initial permeability of more than 10.sup.4, a low coercive force of less than 0.10 Oe and an excellent flexibility,forming a thin ribbon having a compact and fine grain size structure substantially without existing of the ordered lattice, andannealing thus obtained thin ribbon at a temperature of between 600.degree. to 1,000.degree. C. for 1 minute to 5 hours, more preferably 1 to 100 minutes so as to obtain a columnar crystal structure by promoting the growth of crystal grain size.
Abstract:
A method for manufacturing a thin and flexible ribbon of dielectric material comprisesheating a raw material mainly consisting of dielectric material which can form a crystalline structure in a solid state and of a glass former which is included by 0 to 50 atomic percentages at a temperature above a melting point of the raw material to form a one phase melt;ejecting the melt thus formed through a nozzle against a cooling surface of a rotating disc, drum or belt, the ejection being carried out under a pressure of 0.01 to 1.5 atm. to form a continuous jet flow of the melt; andcooling instantaneously and rapidly the jet flow of the melt while it is in contact with the cooling surface at a cooling rate of 1,000 to 1,000,000.degree. C./sec so as to form a thin and flexible ribbon of the dielectric material which contains the amorphous state more than 50% in an area ratio. The dielectric constant and breakdown voltage of the ribbon thus formed are very high. Further the mechanical property of the ribbon is also superior to that of known plate or chip of dielectric material. The dielectric constant and the breakdown voltage can be improved by heating the ribbon as grown at a temperature within 300.degree. to 1,100.degree. C.
Abstract:
This invention relates to a process for preparing a magnetic disk, which comprises (a) subjecting a substrate having an anodized aluminum film to mirror surface-finishing, (b) widening pores of the anodized aluminum film by chemical dissolution treatment so that the total area of pores becomes from 20 to 80% of the entire surface area, thereby retaining crystalline alumina of the anodized aluminum film extruded after the chemical dissolution treatment, and (c) coating the resultant substrate with a magnetic continuous thin film.