摘要:
The present invention relates generally to depositing elemental thin films. In particular, the invention concerns a method of growing elemental metal thin films by Atomic Layer Deposition (ALD) using a boron compound as a reducing agent. In a preferred embodiment the method comprises introducing vapor phase pulses of at least one metal source compound and at least one boron source compound into a reaction space that contains a substrate on which the metal thin film is to be deposited. Preferably the boron compound is capable of reducing the adsorbed portion of the metal source compound into its elemental electrical state.
摘要:
This invention concerns a method for depositing transition metal nitride thin films by an Atomic Layer Deposition (ALD) type process. According to the method vapor-phase pulse of a source material, a reducing agent capable of reducing metal source material, and a nitrogen source material capable of reacting with the reduced metal source material are alternately and sequentially fed into a reaction space and contacted with the substrate. According to the invention as the reducing agent is used a boron compound which is capable of forming gaseous reaction byproducts when reacting with the metal source material.
摘要:
The present invention relates generally to a method of depositing transition metal carbide thin films. In particular, the invention concerns a method of depositing transition metal carbide thin films by atomic layer deposition (ALD), in which a transition metal source compound and a carbon source compound are alternately provided to the substrate. A variety of metal and carbon source gases are disclosed. The methods are applicable to forming metal carbide thin films in semiconductor fabrication, and particularly to forming thin, conductive diffusion barriers within integrated circuits.
摘要:
A process for growing an electrically conductive metalloid thin film on a substrate with a chemical vapor deposition process. A metal source material and a reducing agent capable of reducing the metal source material to a reduced state are vaporized and fed into a reaction space, where the metal source material and the reducing agent are contacted with the substrate. The reducing agent is a boron compound having at least one boron-carbon bond, and the boron compound forms gaseous by-products when reacted with the metal source material. Generally, the boron compound is an alkylboron compound with 0-3 halogen groups attached to the boron. The metal source material and the reducing agent may be fed continuously or in pulses during the deposition process.
摘要:
The present invention relates generally to depositing elemental thin films. In particular, the invention concerns a method of growing elemental metal thin films by Atomic Layer Deposition (ALD) using a boron compound as a reducing agent. In a preferred embodiment the method comprises introducing vapor phase pulses of at least one metal source compound and at least one boron source compound into a reaction space that contains a substrate on which the metal thin film is to be deposited. Preferably the boron compound is capable of reducing the adsorbed portion of the metal source compound into its elemental electrical state.
摘要:
The present invention relates generally to depositing elemental thin films. In particular, the invention concerns a method of growing elemental metal thin films by Atomic Layer Deposition (ALD) using a boron compound as a reducing agent. In a preferred embodiment the method comprises introducing vapor phase pulses of at least one metal source compound and at least one boron source compound into a reaction space that contains a substrate on which the metal thin film is to be deposited. Preferably the boron compound is capable of reducing the adsorbed portion of the metal source compound into its elemental electrical state.
摘要:
A process for growing an electrically conductive metalloid thin film on a substrate with a chemical vapor deposition process. A metal source material and a reducing agent capable of reducing the metal source material to a reduced state are vaporized and fed into a reaction space, where the metal source material and the reducing agent are contacted with the substrate. The reducing agent is a boron compound having at least one boron-carbon bond, and the boron compound forms gaseous by-products when reacted with the metal source material. Generally, the boron compound is an alkylboron compound with 0-3 halogen groups attached to the boron. The metal source material and the reducing agent may be fed continuously or in pulses during the deposition process.
摘要:
The present invention relates generally to a method of depositing transition metal carbide thin films. In particular, the invention concerns a method of depositing transition metal carbide thin films by atomic layer deposition (ALD), in which a transition metal source compound and a carbon source compound are alternately provided to the substrate. A variety of metal and carbon source gases are disclosed. The methods are applicable to forming metal carbide thin films in semiconductor fabrication, and particularly to forming thin, conductive diffusion barriers within integrated circuits.
摘要:
The present method provides tools for growing conformal metal nitride, metal carbide and metal thin films, and nanolaminate structures incorporating these films, from aggressive chemicals. The amount of corrosive chemical compounds, such as hydrogen halides, is reduced during the deposition of transition metal, transition metal carbide and transition metal nitride thin films on various surfaces, such as metals and oxides. Getter compounds protect surfaces sensitive to hydrogen halides and ammonium halides, such as aluminum, copper, silicon oxide and the layers being deposited, against corrosion. Nanolaminate structures (20) incorporating metal nitrides, such as titanium nitride (30) and tungsten nitride (40), and metal carbides, and methods for forming the same, are also disclosed.
摘要:
The present method provides tools for growing conformal metal nitride, metal carbide and metal thin films, and nanolaminate structures incorporating these films, from aggressive chemicals. The amount of corrosive chemical compounds, such as hydrogen halides, is reduced during the deposition of transition metal, transition metal carbide and transition metal nitride thin films on various surfaces, such as metals and oxides. Getter compounds protect surfaces sensitive to hydrogen halides and ammonium halides, such as aluminum, copper, silicon oxide and the layers being deposited, against corrosion. Nanolaminate structures (20) incorporating metal nitrides, such as titanium nitride (30) and tungsten nitride (40), and metal carbides, and methods for forming the same, are also disclosed.