Abstract:
A method of generating a population of cells useful for treating a brain disorder in a subject is disclosed. The method comprises contacting mesenchymal stem cells (MSCs) with at least one exogenous miRNA having a nucleic acid sequence at least 90% identical to a sequence selected from the group consisting of SEQ ID NOs: 15-19 and 27-35, thereby generating the population of cells and/or generating neurotrophic factors that may provide important signals to damaged tissues or locally residing stem cells. MSCs differentiated by miRs may also secrete miRs and deliver them to adjacent cells and therefore provide important signals to neighboring endogenous normal or malignant cells.
Abstract:
The present invention provides new ceramide analogs indicated as the compounds of formula (II). These novel analogs exhibit a significant anti cancerous effect and are therefore provided as a pharmaceutical composition for treating cell proliferative diseases, neurodegenerative disorders, metabolism-associated conditions, infectious diseases, and immune-related disorders. The invention further provides combined compositions and kits combining the novel ceramide analogs of formula (II) with an additional therapeutic agent.
Abstract:
Some embodiments of the invention comprise methods, systems, and compositions to selectively induce, whether in vitro or in vivo, the neuronal differentiation of multipotent stromal cells through the application of microRNAs, including but not limited to miRNA-124, miRNA-137 and/or miRNA-9* expression products of those miRNAs, and molecules and compositions containing functional elements of those miRNAs. Some embodiments of the invention also comprise the therapeutic administration and use of such induced cells to treat mammalian injuries and diseases, including but not limited to, nervous system injuries or diseases that may otherwise result in decreased cell or system function.
Abstract:
A method of processing an organ is disclosed. The method comprises: (a) placing an organ in a sealable container; (b) disrupting the structure of said organ to yield a cell suspension; and (c) transferring said cell suspension to a sealable cell-suspension storage container, thereby isolating cells of said organ, wherein said sealable container, wherein said disrupting and said transferring are all performed substantially in a continuous vessel.
Abstract:
The present invention features a method of inducing donor-specific tolerance in a host. Tolerogenic treatments of the present invention may be administered to a host prior to transplantation of donor-derived materials. The tolerogenic treatment involves (1) administering an immunosuppressive agent to a host mammal in a non-myeloablative regimen sufficient to decrease, but not necessarily to eliminate, the host mammal's functional T lymphocyte population; (2) infusing donor antigens from a non-syngeneic donor into the host mammal; (3) eliminating those host T lymphocytes responding to the infused donor antigens using a non-myeloablative dose of lymphocytotoxic or tolerizing agent; and (4) administering donor hematopoietic cells to the host mammal. Donor lymphoid cells used for cell therapy of a host mammal can be depleted of host specific immunological reactivity by methods essentially similar to those use for tolerizing a host mammal prior to transplantation.
Abstract:
Methods have been discovered for treating minimal residual disease following removal of most or a substantial fraction of malignant cells from a cancer patient. An autologous stem cell transplant is performed on the patient. Following partial hematopoiesis recovery, the patient is infused with allogeneic peripheral blood lymphocytes, either alone or in combination with in vivo or in vitro cytokine. The infused allogeneic lymphocytes engender an anti-malignant cell response and can be instrumental in prevention of disease relapse.
Abstract:
A composition for the treatment of diabetes and a method of use thereof. composition includes an immunoregulator, preferably Linomide, and a .beta. cell proliferative agent, preferably reg protein. The composition has been shown to be effective in both inhibiting the progression of diabetes, and reversing the course of the disease, in the NOD mouse model.
Abstract:
A biochemically pure polypeptide(s), termed osteogenic growth polypeptide (OGP), which exhibits stimulatory effects on osteoblastic cells, in vivo bone formation and hemopoietic reconstruction. OGP, identified from regenerating bone marrow, has an amino acid sequence ofAla-Leu-Lys-Arg-Gln-Gly-Arg-Thr-Leu-Tyr-Gly-Phe-Gly-Gly.
Abstract:
The present invention relates to a novel class of tri-aryl compounds, compositions comprising the same and processes for the preparation thereof.