摘要:
A laser diode and method for fabricating same, wherein the laser diode generally comprises an InGaN compliance layer on a GaN n-type contact layer and an AlGaN/GaN n-type strained super lattice (SLS) on the compliance layer. An n-type GaN separate confinement heterostructure (SCH) is on said n-type SLS and an InGaN multiple quantum well (MQW) active region is on the n-type SCH. A GaN p-type SCH on the MQW active region, an AlGaN/GaN p-type SLS is on the p-type SCH, and a p-type GaN contact layer is on the p-type SLS. The compliance layer has an In percentage that reduces strain between the n-type contact layer and the n-type SLS compared to a laser diode without the compliance layer. Accordingly, the n-type SLS can be grown with an increased Al percentage to increase the index of refraction. This along with other features allows for reduced threshold current and voltage operation.
摘要翻译:一种激光二极管及其制造方法,其中激光二极管通常包括在GaN n型接触层上的InGaN柔性层和在柔性层上的AlGaN / GaN n型应变超晶格(SLS)。 n型GaN分离限制异质结构(SCH)在所述n型SLS上,并且InGaN多量子阱(MQW)有源区在n型SCH上。 在MQW有源区上的GaN p型SCH,AlGaN / GaN p型SLS在p型SCH上,p型GaN接触层在p型SLS上。 顺应层具有与不具有柔顺层的激光二极管相比,n型接触层和n型SLS之间的应变的In百分比。 因此,n型SLS可以以增加的Al百分数生长以增加折射率。 这与其他功能一起允许降低阈值电流和电压操作。
摘要:
A method of fabricating an optoelectronic device, comprising growing an active layer of the device on an oblique surface of a suitable material, wherein the oblique surface comprises a facetted surface. The present invention also discloses a method of fabricating the facetted surfaces. One fabrication process comprises growing an epitaxial layer on a suitable material, etching the epitaxial layer through a mask to form the facets having a specific crystal orientation, and depositing one or more active layers on the facets. Another method comprises growing a layer of material using a lateral overgrowth technique to produce a facetted surface, and depositing one or more active layers on the facetted surfaces. The facetted surfaces are typically semipolar planes.
摘要:
A susceptor for holding semiconductor wafers in an MOCVD reactor during growth of epitaxial layers on the wafers is disclosed. The susceptor comprises a base structure made of a material having low thermal conductivity at high temperature, and has one or more plate holes to house heat transfer plugs. The plugs are made of a material with high thermal conductivity at high temperatures to transfer heat to the semiconductor wafers. A metalorganic organic chemical vapor deposition reactor is also disclosed utilizing a susceptor according to the present invention.
摘要:
An LED having a p-type layer of material with an associated p-contact, an n-type layer of material with an associated n-contact and an active region between the p-type layer and the n-type layer, includes a confinement structure that is formed within one of the p-type layer of material and the n-type layer of material. The confinement structure is generally aligned with the contact on the top and primary emission surface of the LED and substantially prevents the emission of light from the area of the active region that is coincident with the area of the confinement structure and the top-surface contact. The LED may include a roughened emitting-side surface to further enhance light extraction.
摘要:
Highly planar non-polar a-plane GaN films are grown by hydride vapor phase epitaxy (HVPE). The resulting films are suitable for subsequent device regrowth by a variety of growth techniques
摘要:
A method of growing highly planar, fully transparent and specular m-plane gallium nitride (GaN) films. The method provides for a significant reduction in structural defect densities via a lateral overgrowth technique. High quality, uniform, thick m-plane GaN films are produced for use as substrates for polarization-free device growth.
摘要:
A laser diode and method for fabricating same, wherein the laser diode generally comprises an InGaN compliance layer on a GaN n-type contact layer and an AlGaN/GaN n-type strained super lattice (SLS) on the compliance layer. An n-type GaN separate confinement heterostructure (SCH) is on said n-type SLS and an InGaN multiple quantum well (MQW) active region is on the n-type SCH. A GaN p-type SCH on the MQW active region, an AlGaN/GaN p-type SLS is on the p-type SCH, and a p-type GaN contact layer is on the p-type SLS. The compliance layer has an In percentage that reduces strain between the n-type contact layer and the n-type SLS compared to a laser diode without the compliance layer. Accordingly, the n-type SLS can be grown with an increased Al percentage to increase the index of refraction. This along with other features allows for reduced threshold current and voltage operation.
摘要翻译:一种激光二极管及其制造方法,其中激光二极管通常包括在GaN n型接触层上的InGaN柔性层和在柔性层上的AlGaN / GaN n型应变超晶格(SLS)。 n型GaN分离限制异质结构(SCH)在所述n型SLS上,并且InGaN多量子阱(MQW)有源区在n型SCH上。 在MQW有源区上的GaN p型SCH,AlGaN / GaN p型SLS在p型SCH上,p型GaN接触层在p型SLS上。 顺应层具有与不具有柔顺层的激光二极管相比,n型接触层和n型SLS之间的应变的In百分比。 因此,n型SLS可以以增加的Al百分数生长以增加折射率。 这与其他功能一起允许降低阈值电流和电压操作。
摘要:
A susceptor for holding semiconductor wafers in an MOCVD reactor during growth of epitaxial layers on the wafers is disclosed. The susceptor comprises a base structure made of a material having low thermal conductivity at high temperature, and has one or more plate holes to house heat transfer plugs. The plugs are made of a material with high thermal conductivity at high temperatures to transfer heat to the semiconductor wafers. A metalorganic chemical vapor deposition reactor is also disclosed utilizing a susceptor according to the present invention.
摘要:
The present invention discloses a susceptor mounting assembly for holding semiconductor wafers in an MOCVD reactor during growth of epitaxial layers on the wafers, that is particularly adapted for mounting a susceptor in an inverted type reactor chamber. It includes a tower having an upper and lower end with the upper end mounted to the top inside surface of the reactor chamber and a susceptor is arranged at the tower's lower end. Semiconductor wafers are held adjacent to the susceptor such that heat from the susceptor passes into wafers. A second embodiment of a susceptor mounting assembly according to the invention also comprises a tower having an upper and lower end. The tower's upper end is mounted to the top inside surface of the reactor chamber. A susceptor is housed within a cup and the cup is mounted to the tower's lower end.