Abstract:
A method for etching a metal layer formed on a substrate to form a metal line, using an amorphous carbon layer as a pattern mask. One embodiment of the method of the invention etches a metal layer formed on a substrate, for forming a metal line, by depositing an amorphous carbon layer on the metal layer, patterning the amorphous carbon layer to provide a pattern mask on the metal layer, thus exposing portions of said metal layer; and etching the exposed portions of the metal layer, to form a metal line. In an embodiment, the metal layer comprises a copper layer.
Abstract:
The invention is embodied in a plasma reactor for processing a semiconductor wafer, the reactor having a gas distribution plate including a front plate in the chamber and a back plate on an external side of the front plate, the gas distribution plate comprising a gas manifold adjacent the back plate, the back and front plates bonded together and forming an assembly. The assembly includes an array of holes through the front plate and communicating with the chamber, at least one gas flow-controlling orifice through the back plate and communicating between the manifold and at least one of the holes, the orifice having a diameter that determines gas flow rate to the at least one hole. In addition, an array of pucks is at least generally congruent with the array of holes and disposed within respective ones of the holes to define annular gas passages for gas flow through the front plate into the chamber, each of the annular gas passages being non-aligned with the orifice.
Abstract:
A method of fabricating an interconnect structure (e.g., dual damascene interconnect structure, and the like) of an integrated circuit device is disclosed. The interconnect structure is fabricated using a bi-layer mask comprising an imaging film and an organic planarizing film. The bi-layer mask is used to remove lithographic misalignment between a contact hole, a trench, and an underlying conductive line when the interconnect structure is formed. Additionally, a sacrificial layer may be used to protect an inter-metal dielectric (IMD) layer during subsequent planarization of the interconnect structure. The sacrificial layer may be formed of amorphous silicon (Si), titanium nitride (TiN), tungsten (W), and the like. The interconnect structure may be formed of a metal (e.g., copper (Cu), aluminum (Al), tantalum (Ti), tungsten (W), titanium (Ti), and the like) or a conductive compound (e.g., tantalum nitride (TaN), titanium nitride (TiN), tungsten nitride (WN), and the like).
Abstract:
A plasma reactor includes a vacuum enclosure including a side wall and a ceiling defining a vacuum chamber, and a workpiece support within the chamber and facing the ceiling for supporting a planar workpiece, the workpiece support and the ceiling together defining a processing region between the workpiece support and the ceiling. Process gas inlets furnish a process gas into the chamber. A plasma source power electrode is connected to an RF power generator for capacitively coupling plasma source power into the chamber for maintaining a plasma within the chamber. The reactor further includes at least a first overhead solenoidal electromagnet adjacent the ceiling, the overhead solenoidal electromagnet, the ceiling, the sidewall and the workpiece support being located along a common axis of symmetry. A current source is connected to the first solenoidal electromagnet and furnishes a first electric current in the first solenoidal electromagnet whereby to generate within the chamber a magnetic field which is a function of the first electric current, the first electric current having a value such that the magnetic field increases uniformity of plasma ion density radial distribution about the axis of symmetry near a surface of the workpiece support.
Abstract:
An apparatus configured to confine a plasma within a processing region in a plasma processing chamber. In one embodiment, the apparatus includes a ring that has a baffle having a plurality of slots and a plurality of fingers. Each slot is configured to have a width less than the thickness of a plasma sheath contained in the processing region.
Abstract:
An inductive antenna of a plasma reactor for processing a semiconductor wafer is connected to a radio frequency (RF) power source, and consists of a conductor arranged in successive loops that wind in opposing directions, adjacent pairs of the successive loops having facing portions in which current flow is parallel, the facing portions being sufficiently close to at least nearly share a common current path, whereby to form transitions across the facing portions between opposing magnetic polarizations.
Abstract:
A method is provided for etching a dielectric structure. The dielectric structure comprises: (a) a layer of undoped silicon oxide or F-doped silicon oxide; and (b) a layer of C,H-doped silicon oxide. The dielectric structure is etched in a plasma-etching step, which plasma-etching step is conducted using a plasma source gas that comprises nitrogen atoms and fluorine atoms. As one example, the plasma source gas can comprise a gaseous species that comprises one or more nitrogen atoms and one or more fluorine atoms (e.g., NF3). As another example, the plasma source gas can comprise (a) a gaseous species that comprises one or more nitrogen atoms (e.g., N2) and (b) a gaseous species that comprises one or more fluorine atoms (e.g., a fluorocarbon gas such as CF4). In this etching step, the layer of C,H-doped silicon oxide is preferentially etched relative to the layer of undoped silicon oxide or F-doped silicon oxide. The method of the present invention is applicable, for example, to dual damascene structures.
Abstract:
A method of fabricating an interconnect structure comprising etching a via into an upper low K dielectric layer and into a hardened portion of a lower low K dielectric layer. The via is defined by a pattern formed in a photoresist layer. The photoresist layer is then stripped, and a trench that circumscribes the via as defined by a hard mask is etched into the upper low K dielectric layer and, simultaneously, the via that was etched into the hardened portion of the lower low K dielectric layer is further etched into the lower low K dielectric layer. The result is a low K dielectric dual damascene structure.
Abstract:
A gas distribution ceiling electrode for use as a capacitive source power applicator and gas distribution showerhead in a plasma reactor includes a metal base and a process-compatible protective layer on the interior surface of he electrode having a dopant impurity concentration within a range corresponding to a minimal change in RF power absorption in the protective layer at an RF source power frequency with changes in coating temperature and or thickness. The metal base may have a set of first arcuately slotted gas passages and a set of pressure-dropping orifices coinciding axially with the top ends of the gas passages. The protective coating a set of arcuately slotted gas passages in registration gas passages of the metal base. The pressure drop in the orifices and the electric field drop in the slotted gas passages are both sufficient to maintain the pressure and electric field within the gas passages within a range that prevents arcing.
Abstract:
The present invention provides a low-k dielectric etching process with high etching selectivities with respect to adjacent layers of other materials, such as an overlying photoresist mask and an underlying barrier/liner layer. The process comprises the step of exposing a portion of the low-k dielectric layer to a plasma of a process gas that includes a fluorocarbon gas, a nitrogen-containing gas, and an inert gas, wherein the volumetric flow ratio of inert:fluorocarbon gas is in the range of 20:1 to 100:1, and the volumetric flow ratio of fluorocarbon:nitrogen-containing gas is selected to provide a low-k dielectric to photoresist etching selectivity ratio greater than about 5:1 and a low-k dielectric etch rate higher than about 4000 null/min.