Abstract:
A capacitively coupled reactor for plasma etch processing of substrates at subatmospheric pressures includes a chamber body defining a processing volume, a lid provided upon the chamber body, the lid being a first electrode, a substrate support provided in the processing volume and comprising a second electrode, a radio frequency source coupled at least to one of the first and second electrodes, a process gas inlet configured to deliver process gas into the processing volume, and an evacuation pump system having pumping capacity of at least 1600 liters/minute. The greater pumping capacity controls residency time of the process gases so as to regulate the degree of dissociation into more reactive species.
Abstract:
Apparatus and methods provide a module defining processing regions in which substrates can be processed. One embodiment of the module has a serial arrangement of processing regions, where a first processing region is disposed at a front end portion of the module and a second processing region is defined at a back end portion of the module. A substrate transfer passageway fluidly communicates the first and second processing regions.
Abstract:
The invention is a plasma reactor employing a chamber having a process gas inlet and enclosing a plasma process region. The reactor includes a workpiece support pedestal within the chamber capable of supporting a workpiece at a processing location interfacing with the plasma process region, the support pedestal and the chamber defining an annulus therebetween to permit gas to be evacuated therethrough from the plasma process region. One aspect of the invention includes a ring horseshoe magnet adjacent and about one side of the annulus, the magnet being spaced from the plasma processing location by a spacing substantially greater than the smallest distance across the annulus. The invention further includes the magnet defining opposite poles which are substantially closer together than the spacing of the magnet from the processing location, the magnet being oriented to provide its maximum magnetic flux across the annulus and a minimum of the flux at the plasma processing location.
Abstract:
In a substrate vacuum processing chamber, a second inner slit passage door apparatus and method to supplement the normal slit valve and its door at the outside of the chamber. The inner slit passage door, blocks the slit passage at or adjacent the substrate processing location in a vacuum processing chamber to prevent process byproducts from depositing on the inner surfaces of the slit passage beyond the slit passage door and improves the uniformity of plasma in the processing chamber by eliminating a large cavity adjacent to the substrate processing location into which the plasma would otherwise expand. The inner slit passage door is configured and positioned in such a way as to avoid generating particles from the opening and closing motion of the second slit valve door, as it does not rub against any element of the chamber during its motion and the inner slit passage door is positioned with a predetermined gap from adjacent pieces and the door configuration includes beveled surfaces to further reduce the chance for particle generation, even when there is deposition of process byproducts on the door and its adjacent surfaces.
Abstract:
A capacitively coupled reactor for plasma etch processing of substrates at subatmospheric pressures includes a chamber body defining a processing volume, a lid provided upon the chamber body, the lid being a first electrode, a substrate support provided in the processing volume and comprising a second electrode, a radio frequency source coupled at least to one of the first and second electrodes, a process gas inlet configured to deliver process gas into the processing volume, and an evacuation pump system having pumping capacity of at least 1600 liters/minute. The greater pumping capacity controls residency time of the process gases so as to regulate the degree of dissociation into more reactive species.
Abstract:
The invention concerns a plasma reactor employing a chamber enclosure including a process gas inlet and defining a plasma processing region. A workpiece support pedestal capable of supporting a workpiece at processing location faces the plasma processing region, the pedestal and enclosure being spaced from one another to define a pumping annulus therebetween having facing walls in order to permit the process of gas to be evacuated therethrough from the process region. A pair of opposing plasma confinement magnetic poles within one of the facing walls of the annulus, the opposing magnetic poles being axially displaced from one another. The magnetic poles are axially displaced below the processing location by a distance which exceeds a substantial fraction of a spacing between the facing walls of the annulus.
Abstract:
An apparatus configured to confine a plasma within a processing region in a plasma processing chamber. In one embodiment, the apparatus includes a ring that has a baffle having a plurality of slots and a plurality of fingers. Each slot is configured to have a width less than the thickness of a plasma sheath contained in the processing region.
Abstract:
A plasma reactor for processing a semiconductor wafer includes a side wall and an overhead ceiling defining a chamber, a workpiece support cathode within the chamber having a working surface facing the ceiling for supporting a semiconductor workpiece, process gas inlets for introducing a process gas into the chamber and an RF bias power generator having a bias power frequency. There is a bias power feed point at the working surface and an RF conductor is connected between the RF bias power generator and the bias power feed point at the working surface. A dielectric sleeve surrounds a portion of the RF conductor, the sleeve having an axial length along the RF conductor, a dielectric constant and an axial location along the RF conductor, the length, dielectric constant and location of the sleeve being such that the sleeve provides a reactance that enhances plasma ion density uniformity over the working surface. In accordance with a further aspect, the reactor can include an annular RF coupling ring having an inner diameter corresponding generally to a periphery of the workpiece, the RF coupling ring extending a sufficient portion of a distance between the working surface and the overhead electrode to enhance plasma ion density near a periphery of the workpiece.
Abstract:
A thermally controlled chamber liner comprising a passage having an inlet and outlet adapted to flow a fluid through the one or more fluid passages formed at least partially therein. The chamber liner may comprise a first liner, a second liner or both a first liner and a second liner. The thermally controlled chamber liner maintains a predetermined temperature by running fluid from a temperature controlled, fluid source through the fluid passages. By maintaining a predetermined temperature, deposition of films on the chamber liner is discouraged and particulate generation due to stress cracking of deposited films is minimized.
Abstract:
A method of adjusting the cathode DC bias in a plasma chamber for fabricating semiconductor devices. A dielectric shield is positioned between the plasma and a selected portion of the electrically grounded components of the chamber, such as the electrically grounded chamber wall. The cathode DC bias is adjusted by controlling one or more of the following parameters: (1) the surface area of the chamber wall or other grounded components which is blocked by the dielectric shield; (2) the thickness of the dielectric; (3) the gap between the shield and the chamber wall; and (4) the dielectric constant of the dielectric material. In an apparatus aspect, the invention is a plasma chamber for fabricating semiconductor devices having an exhaust baffle with a number of sinuous passages. Each passage is sufficiently long and sinuous that no portion of the plasma within the chamber can extend beyond the outlet of the passage. By blocking the plasma from reaching the exhaust pump, the exhaust baffle reduces the deposition of unwanted particles on exhaust pump components. The exhaust baffle also reduces the cathode DC bias by reducing the effective surface area of the electrically grounded chamber wall which couples RF power to the plasma.