Abstract:
The present disclosure related to a flexible electronic substrate assembly and a method and system of processing solder paste onto an electrical substrate. The assembly includes a flexible substrate having a solderable medium provided along the flexible substrate. A pattern of solder paste may be cured to a portion of the solderable medium. The solderable medium may be a generally continuous construction or a patterned construction relative to the flexible substrate. The substrate may be unwound from a roll of substrate material before solder paste is deposited thereon. The flexible electric substrate assembly may be formed though a roll to roll process. Infrared heat may be applied to the substrate with the solder paste deposit as the substrate is traveling along the process direction to reflow the solder paste as the substrate is traveling along the process direction at a high rate of speed.
Abstract:
A battery assembly includes a battery, an outer layer, and a power indicator apparatus. The battery includes a first terminal and a second terminal. The power indicator apparatus comprises an electrical conductor and a mechanical switch. The electrical conductor is configured to be in continuous electrical communication with the first terminal. The mechanical switch is configured to be actuated by an application of pressure at a single location, and upon actuation, to place the electrical conductor in electrical communication with the second terminal such that the power indicator apparatus can facilitate a reading of a potential energy stored in the battery. Methods of assembly and methods of determining a potential energy stored in the battery are also provided herein.
Abstract:
A multi-layer shrink film. The shrink film can exhibit a significant amount of shrink within a certain temperature range that is above the onset temperature of the film. The film can exhibit a shrinkage that is at least about 50% of the total shrink within a temperature range T1 above the onset temperature of the film. In one aspect, the shrink film comprises a core layer and skin layers disposed about opposite surfaces of the core layer, and tie layers disposed between the core and the skin layers, the skin layers individually comprising a polyester, e.g., a glycol-modified polyester, and the tie layers individually comprising an anhydride modified material.
Abstract:
Electrically conductive thin metallic films are disclosed. The thin films can be used to form shaped or patterned electrical conductors for consumer goods and electronic applications. Various connectors are also described which can be used in conjunction with the conductors to form thin layered assemblies such as battery testers. Also disclosed are methods for producing the shaped or patterned electrical conductors.
Abstract:
The present disclosure related to a flexible electronic substrate assembly and a method and system of processing solder paste onto an electrical substrate. The assembly includes a flexible substrate having a solderable medium provided along the flexible substrate. A pattern of solder paste may be cured to a portion of the solderable medium. The solderable medium may be a generally continuous construction or a patterned construction relative to the flexible substrate. The substrate may be unwound from a roll of substrate material before solder paste is deposited thereon. The flexible electric substrate assembly may be formed though a roll to roll process. Infrared heat may be applied to the substrate with the solder paste deposit as the substrate is traveling along the process direction to reflow the solder paste as the substrate is traveling along the process direction at a high rate of speed.
Abstract:
The present disclosure related to a flexible electronic substrate assembly and a method and system of processing solder paste onto an electrical substrate. The assembly includes a flexible substrate having a solderable medium provided along the flexible substrate. A pattern of solder paste may be cured to a portion of the solderable medium. The solderable medium may be a generally continuous construction or a patterned construction relative to the flexible substrate. The substrate may be unwound from a roll of substrate material before solder paste is deposited thereon. The flexible electric substrate assembly may be formed though a roll to roll process. Infrared heat may be applied to the substrate with the solder paste deposit as the substrate is traveling along the process direction to reflow the solder paste as the substrate is traveling along the process direction at a high rate of speed.
Abstract:
The present disclosure related to a flexible electronic substrate assembly and a method and system of processing solder paste onto an electrical substrate. The assembly includes a flexible substrate having a solderable medium provided along the flexible substrate. A pattern of solder paste may be cured to a portion of the solderable medium. The solderable medium may be a generally continuous construction or a patterned construction relative to the flexible substrate. The substrate may be unwound from a roll of substrate material before solder paste is deposited thereon. The flexible electric substrate assembly may be formed though a roll to roll process. Infrared heat may be applied to the substrate with the solder paste deposit as the substrate is traveling along the process direction to reflow the solder paste as the substrate is traveling along the process direction at a high rate of speed.