Abstract:
A chuck for testing an integrated circuit includes an upper conductive layer having a lower surface and an upper surface suitable to support a device under test. An upper insulating layer has an upper surface at least in partial face-to-face contact with the lower surface of the upper conductive layer, and a lower surface. A middle conductive layer has an upper surface at least in partial face-to-face contact with the lower surface of the upper insulating layer, and a lower surface.
Abstract:
Probe systems and methods including electric contact detection. The probe systems include a probe assembly and a chuck. The probe systems also include a translation structure configured to operatively translate the probe assembly and/or the chuck and an instrumentation package configured to detect contact between the probe system and a device under test (DUT) and to test operation of the DUT. The instrumentation package includes a continuity detection circuit, a test circuit, and a translation structure control circuit. The continuity detection circuit is configured to detect electrical continuity between a first probe electrical conductor and a second probe electrical conductor. The test circuit is configured to electrically test the DUT. The translation structure control circuit is configured to control the operation of the translation structure. The methods include monitoring continuity between a first probe and a second probe and controlling the operation of a probe system based upon the monitoring.
Abstract:
Systems and methods for on-wafer dynamic testing of electronic devices. The systems include a probe head assembly, a probe-side contacting structure, a chuck, and a chuck-side contacting structure. The probe head assembly includes a probe configured to electrically contact a first side of a device under test (DUT). The probe-side contacting structure includes a probe-side contacting region. The chuck includes an electrically conductive support surface configured to support a substrate that includes the DUT and to electrically contact a second side of the DUT. The probe head assembly and the chuck are configured to translate relative to one another to selectively establish electrical contact between the probe and the DUT. The chuck-side contacting structure includes a chuck-side contacting region that is in electrical communication with the electrically conductive support surface and opposed to the probe-side contacting structure. The methods may include methods of operating the system or systems.
Abstract:
A chuck for testing an integrated circuit includes an upper conductive layer having a lower surface and an upper surface suitable to support a device under test. An upper insulating layer has an upper surface at least in partial face-to-face contact with the lower surface of the upper conductive layer, and a lower surface. A middle conductive layer has an upper surface at least in partial face-to-face contact with the lower surface of the upper insulating layer, and a lower surface.
Abstract:
Systems and methods for on-wafer dynamic testing of electronic devices. The systems include a probe head assembly, a probe-side contacting structure, a chuck, and a chuck-side contacting structure. The probe head assembly includes a probe configured to electrically contact a first side of a device under test (DUT). The probe-side contacting structure includes a probe-side contacting region. The chuck includes an electrically conductive support surface configured to support a substrate that includes the DUT and to electrically contact a second side of the DUT. The probe head assembly and the chuck are configured to translate relative to one another to selectively establish electrical contact between the probe and the DUT. The chuck-side contacting structure includes a chuck-side contacting region that is in electrical communication with the electrically conductive support surface and opposed to the probe-side contacting structure. The methods may include methods of operating the system or systems.
Abstract:
Shielded probe systems are disclosed herein. The probe systems are configured to test a device under test (DUT) and include a measurement chamber that at least partially bounds an enclosed volume, an aperture defined by the measurement chamber, a probing assembly, and a shielding structure. The probing assembly includes a probe, which is oriented within the enclosed volume, a probe arm, which is operatively attached to the probe, and a manipulator, which is operatively attached to the probe arm. At least a portion of the probing assembly extends through the aperture. The shielding structure extends between the measurement chamber and the probing assembly and is configured to restrict fluid flow through the aperture and shield the enclosed volume from an ambient environment that surrounds the measurement chamber while maintaining at least a threshold separation distance from the probe arm throughout a probe arm range-of-motion thereof.
Abstract:
A chuck for testing an integrated circuit includes an upper conductive layer having a lower surface and an upper surface suitable to support a device under test. An upper insulating layer has an upper surface at least in partial face-to-face contact with the lower surface of the upper conductive layer, and a lower surface. A middle conductive layer has an upper surface at least in partial face-to-face contact with the lower surface of the upper insulating layer, and a lower surface.
Abstract:
Shielded probe systems are disclosed herein. The probe systems are configured to test a device under test (DUT) and include a measurement chamber that at least partially bounds an enclosed volume, an aperture defined by the measurement chamber, a probing assembly, and a shielding structure. The probing assembly includes a probe, which is oriented within the enclosed volume, a probe arm, which is operatively attached to the probe, and a manipulator, which is operatively attached to the probe arm. At least a portion of the probing assembly extends through the aperture. The shielding structure extends between the measurement chamber and the probing assembly and is configured to restrict fluid flow through the aperture and shield the enclosed volume from an ambient environment that surrounds the measurement chamber while maintaining at least a threshold separation distance from the probe arm throughout a probe arm range-of-motion thereof.
Abstract:
Probe systems and methods including electric contact detection. The probe systems include a probe assembly and a chuck. The probe systems also include a translation structure configured to operatively translate the probe assembly and/or the chuck and an instrumentation package configured to detect contact between the probe system and a device under test (DUT) and to test operation of the DUT. The instrumentation package includes a continuity detection circuit, a test circuit, and a translation structure control circuit. The continuity detection circuit is configured to detect electrical continuity between a first probe electrical conductor and a second probe electrical conductor. The test circuit is configured to electrically test the DUT. The translation structure control circuit is configured to control the operation of the translation structure. The methods include monitoring continuity between a first probe and a second probe and controlling the operation of a probe system based upon the monitoring.
Abstract:
A chuck for testing an integrated circuit includes an upper conductive layer having a lower surface and an upper surface suitable to support a device under test. An upper insulating layer has an upper surface at least in partial face-to-face contact with the lower surface of the upper conductive layer, and a lower surface. A middle conductive layer has an upper surface at least in partial face-to-face contact with the lower surface of the upper insulating layer, and a lower surface.