摘要:
A fabrication method of a circuit board is proposed, wherein a core layer is formed with a plurality of conductive traces, and photo resist is respectively applied on terminals of the conductive traces. Then, a non-solderable material is applied over the core layer as to cover the conductive traces except for the insulating material, and the non-solderable material is adapted to be surface-flush with the insulating material, allowing the insulating material to be exposed from the non-solderable material. Finally, the insulating material is removed from the core layer to expose the terminals of the conductive traces, wherein the exposed terminals are used as bond pads or bond fingers where solder balls, solder bumps or bonding wires can be bonded. This circuit board is cost-effectively fabricated by simplified processes, and beneficial in precisely exposing bond pads or bond fingers, thereby significantly improving yield of fabricated circuit boards.
摘要:
A fabrication method for a circuit board is proposed, wherein a core layer is formed with a plurality of conductive traces, and photo resist is applied on terminals of the conductive traces. A non-solderable material is peelably applied over a support member, and attached to the core layer to cover the conductive traces, wherein adhesion between the support member and the non-solderable material is smaller than adhesion between the non-solderable material and the core layer. Then, the support member is peeled to expose the non-solderable material; further, the non-solderable material is partly removed to expose the photo resist. Finally, the photo resist is etched away to expose the terminals of the conductive traces. The exposed terminals serve as bond pads or fingers where solder balls, bumps or wires are bonded for electrical connection purpose.
摘要:
A window ball grid array (WBGA) semiconductor package and a fabrication method thereof are provided. This WBGA package includes: a substrate having a through opening; a chip mounted on an upper surface and over the opening of the substrate via an adhesive, and electrically connected to a lower surface of the substrate via bonding wires through the opening, with gaps, not applied with the adhesive, formed between the chip and the substrate; a first encapsulation body made of a resin material for encapsulating the chip and the bonding wires, allowing the resin material to pass through the gaps to fill the opening of the substrate and the gaps; a second encapsulation body for covering the part of the first encapsulation body on the lower surface of the substrate; and a plurality of solder balls bonded to area free of the second encapsulation body on the lower surface of the substrate.
摘要:
A mold structure for package fabrication is proposed, and includes a top mold, a fixture and a bottom mold. The top mold is formed with at least an upwardly recessed portion; the fixture is formed with a plurality of downwardly recessed portions; and the bottom mold has a recessed cavity for receiving the fixture therein, and adapted to be engaged with the top mold, wherein a resilient member is disposed on an inner wall of the recessed cavity, and interposed between the fixture and the recessed cavity of the bottom mold, allowing the resilient member to provide a resilient force for properly positioning the fixture. By using the above mold structure, chips mounted on a substrate can be firmly supported in the mold structure without causing chip cracks during a molding process for encapsulating the chips.
摘要:
A light sensitive semiconductor package and a fabrication method thereof are provided in which a chip is mounted on a chip carrier and encompassed by a dam, and an infrared filter is attached to the dam to hermetically isolate the chip from the atmosphere. An encapsulant is formed on the chip carrier and surrounds the dam, and a lens is supported by the encapsulant to be positioned above the infrared filter. This allows light to penetrate through the infrared filter and lens to reach the chip. Before forming the encapsulant and mounting the lens, the semi-fabricated package with the chip being hermetically isolated by the infrared filter and dam is subject to a leak test, allowing a semi-fabricated package successfully passing the test to be formed with the encapsulant and lens, so as to reduce fabrication costs and improve yield of fabricated package products.
摘要:
A low-profile semiconductor device is disclosed which includes a substrate having a base layer formed with at least a hole and a plurality of conductive traces arranged on the base layer. A semiconductor die is attached to the base layer of the substrate opposite to the conductive traces and electrically connected to the conductive traces by a plurality of first conductive elements passing through the hole of the base layer. A plurality of second conductive elements are arrayedly connected to the terminal of each of the conductive traces for providing externally electrical connection to the semiconductor die. The semiconductor die is encapsulated by a first encapsulant formed on the surface of the substrate on which the semiconductor die is mounted. A second encapsulant is formed on the surface of the substrate on which the conductive traces are arranged to completely encapsulate the conductive traces, first conductive elements and the hole. Meanwhile, the second encapsulant is formed to encapsulate the second conductive elements in such a manner that the bottom ends of the second conductive elements are exposed to and flush with the bottom surface of the second encapsulant.
摘要:
A semiconductor package includes a substrate. At least a high-frequency chip and a circuit component susceptible to high-frequency interference are disposed on a top surface of the substrate. A first ground ring is disposed on the substrate surrounding the high-frequency chip. A first metal-post reinforced glue wall is disposed on the first ground ring surrounding the high-frequency chip. A second ground ring is disposed on the top of the substrate surrounding the circuit component. A second metal-post reinforced glue wall is disposed on the second ground ring surrounding the circuit component. A molding compound covers at least the high-frequency chip and the circuit component. A conductive layer is disposed on the molding compound and is coupled to the first metal-post reinforced glue wall and/or the second metal-post reinforced glue wall.
摘要:
A stacked-chip semiconductor package and a fabrication method thereof are provided in which a thermal blocking member is applied over an opening formed through a chip carrier, with a first chip being mounted on the thermal blocking member and a second chip being attached oppositely to the thermal blocking member and received within the opening; the first and second chips are electrically connected to the chip carrier by bonding wires. An encapsulant is formed on the chip carrier for encapsulating the second chip and having a cavity for receiving and exposing the first chip that is a light sensitive chip. By the thermal blocking member interposed between the first and second chips, heat produced from the second chip is prevented from passing to the first chip, thereby not damaging the first chip or causing warpage of the first chip, which can thus assure reliable performances of the semiconductor package.
摘要:
A stacked multi-chip semiconductor package and a fabrication method thereof are provided. A chip carrier is formed with an opening for receiving a first chip therein, and a second chip is stacked on the first chip and over the opening, wherein the first and second chips are respectively electrically connected to the chip carrier by bonding wires. A first encapsulant is formed to encapsulate first chip and corresponding bonding wires, and a second encapsulant is formed around the second chip to encompass a cavity for receiving the second chip and corresponding bonding wires therein. A lid is attached to the second encapsulant for covering the cavity. This semiconductor package allows high integration and increase in operational performances by virtue of stacked multi-chip structure.
摘要:
A stacked chip package has a substrate with a through hole. A first chip is received in the through hole. A second chip is disposed on the first chip. Two chips are electrically connected to an upper surface of the substrate. An adhesive layer and a planar member, which are thermally and electrically conductive, are disposed on a lower surface of the substrate to support the chips and dissipate the heat generated by the chips. An encapsulant covers the upper surface of the substrate. The package has superior heat-dissipating ability, high yield in assembly and small size.