摘要:
A mold structure for package fabrication is proposed, and includes a top mold, a fixture and a bottom mold. The top mold is formed with at least an upwardly recessed portion; the fixture is formed with a plurality of downwardly recessed portions; and the bottom mold has a recessed cavity for receiving the fixture therein, and adapted to be engaged with the top mold, wherein a resilient member is disposed on an inner wall of the recessed cavity, and interposed between the fixture and the recessed cavity of the bottom mold, allowing the resilient member to provide a resilient force for properly positioning the fixture. By using the above mold structure, chips mounted on a substrate can be firmly supported in the mold structure without causing chip cracks during a molding process for encapsulating the chips.
摘要:
A stacked chip package has a substrate with a through hole. A first chip is received in the through hole. A second chip is disposed on the first chip. Two chips are electrically connected to an upper surface of the substrate. An adhesive layer and a planar member, which are thermally and electrically conductive, are disposed on a lower surface of the substrate to support the chips and dissipate the heat generated by the chips. An encapsulant covers the upper surface of the substrate. The package has superior heat-dissipating ability, high yield in assembly and small size.
摘要:
A printed circuit board, which comprises a substrate, a conductive pattern disposed on a surface of said substrate and a solder mask coated on the surface of said substrate and covered over the conductive pattern. The conductive pattern has a bonding pad. The solder mask has an opening corresponding in location to the bonding pad such that a portion of the bonding pad is exposed outside. A space is left between said solder mask and said bonding pad and is communicated with the opening. Whereby, a solder ball can be received in the opening and the space and electrically connected to the bonding pad, such that the solder ball is held on the printed circuit board securely.
摘要:
A semiconductor package and a fabrication method thereof are provided. A plurality of first chips are mounted on and electrically connected to a substrate plate. A shielding structure including a shielding portion and a supporting portion is mounted on the substrate plate, wherein the supporting portion abuts against the substrate plate, and the shielding portion is formed with a plurality of openings corresponding in position to the first chips. An adhesive is applied through the openings to form adhesive layers respectively on the first chips. After removing the shielding structure from the substrate plate, a plurality of second chips are respectively stacked on the adhesive layers and electrically connected to the substrate plate. By performing molding and singulating processes, the packaged structure is singulated to form individual semiconductor packages. It is a characteristic advantage of forming the adhesive layers in a batch manner, making fabrication costs and time significantly reduced.
摘要:
A low profile stack semiconductor package is proposed, wherein at least two chips having centrally-situated bond pads are stacked on a substrate that is formed with a through opening. A first chip is mounted on the substrate, with bond pads thereof being exposed to the opening. A second chip mounted on the first chip, is formed with a peripherally-situated cushion member, whereby bonding wires are adapted to extend from bond pads of the second chip in a direction parallel to the chip, and reach the cushion member beyond which the bonding wires turn downwardly to be directed toward the substrate, wherein the bonding wires are free of forming wire loops as extending above the second chip. By the above structure, the bonding wires would be firmly held in position to be free of contact or short circuit with the second chip, and overall package profile can be significantly miniaturized.
摘要:
The present invention is to provide a double-sided thermally enhanced IC chip package which includes a chip being received in an opening of a substrate and electrically connected to a conductive circuit pattern on a top surface of the substrate through bonding wires. A thermally and electrically conductive planar member is attached to an inactive side of the chip through a thermally and electrically conductive adhesive layer. A portion of an active side of the chip to which the bonding wires are connected is encapsulated by a dielectric encapsulant, and the other portion of the active side of the chip is covered by a thermally and electrically conductive encapsulant. Thus, heat generated by the chip can be efficiently dissipated through the planar member and the thermally and electrically conductive encapsulant. The present invention also discloses a stacked chip package with double-sided heat dissipation capability.
摘要:
A low profile stack semiconductor package is proposed. A lower chip having centrally-situated bond pads is mounted on a substrate, and electrically connected to the substrate by bonding wires. A cushion member is peripherally situated on the lower chip, allowing the bonding wires to extend from the bond pads in a direction parallel to the lower chip, and to reach the cushion member beyond which the bonding wires turn downwardly to be directed toward the substrate. An adhesive is applied on the lower chip, for encapsulating the bond pads, cushion member and bonding wires. This allows an upper chip to be readily stacked on the lower chip by attaching the upper chip to the adhesive, without affecting or damaging structural or electrical arrangement formed on the lower chip.
摘要:
A window ball grid array (WBGA) semiconductor package and a fabrication method thereof are provided. This WBGA package includes: a substrate having a through opening; a chip mounted on an upper surface and over the opening of the substrate via an adhesive, and electrically connected to a lower surface of the substrate via bonding wires through the opening, with gaps, not applied with the adhesive, formed between the chip and the substrate; a first encapsulation body made of a resin material for encapsulating the chip and the bonding wires, allowing the resin material to pass through the gaps to fill the opening of the substrate and the gaps; a second encapsulation body for covering the part of the first encapsulation body on the lower surface of the substrate; and a plurality of solder balls bonded to area free of the second encapsulation body on the lower surface of the substrate.
摘要:
A light sensitive semiconductor package and a fabrication method thereof are provided in which a chip is mounted on a chip carrier and encompassed by a dam, and an infrared filter is attached to the dam to hermetically isolate the chip from the atmosphere. An encapsulant is formed on the chip carrier and surrounds the dam, and a lens is supported by the encapsulant to be positioned above the infrared filter. This allows light to penetrate through the infrared filter and lens to reach the chip. Before forming the encapsulant and mounting the lens, the semi-fabricated package with the chip being hermetically isolated by the infrared filter and dam is subject to a leak test, allowing a semi-fabricated package successfully passing the test to be formed with the encapsulant and lens, so as to reduce fabrication costs and improve yield of fabricated package products.
摘要:
A low-profile semiconductor device is disclosed which includes a substrate having a base layer formed with at least a hole and a plurality of conductive traces arranged on the base layer. A semiconductor die is attached to the base layer of the substrate opposite to the conductive traces and electrically connected to the conductive traces by a plurality of first conductive elements passing through the hole of the base layer. A plurality of second conductive elements are arrayedly connected to the terminal of each of the conductive traces for providing externally electrical connection to the semiconductor die. The semiconductor die is encapsulated by a first encapsulant formed on the surface of the substrate on which the semiconductor die is mounted. A second encapsulant is formed on the surface of the substrate on which the conductive traces are arranged to completely encapsulate the conductive traces, first conductive elements and the hole. Meanwhile, the second encapsulant is formed to encapsulate the second conductive elements in such a manner that the bottom ends of the second conductive elements are exposed to and flush with the bottom surface of the second encapsulant.