Abstract:
The present invention features an adjuvanted vaccine, and methods for preparing an adjuvanted vaccine, preferably for immunizing against influenza, where the adjuvant is a lipid vesicle, and preferably is a nonphospholipid, paucilamellar lipid vesicle. The antigen may be encapsulated in the central cavity of the adjuvant, or mixed in solution with the adjuvant. Moreover, the adjuvant may carry a secondary adjuvant to further improve the immune response.
Abstract:
An antimicrobial lipid-containing oil-in-water emulsion comprising an agent selected from the group consisting of glycerol monooleate, glycerol trioleate, glycerol monolaurate, and glycerol dilaurate as the primary lipid and a cationic halogen-containing compound having a C.sub.12 -C.sub.16 chain as a positive charge producing agent is disclosed. The antimicrobial emulsion can be used in the form of a pharmaceutical preparation to inhibit the growth of a wide variety of infectious pathogens.
Abstract:
A method of producing large scale growth of parasites of the genus Toxoplasma is disclosed which comprises inoculating the microorganisms into a non-adherent human cell line, such as a monocytoid lymphoma cell line, and maintaining the cell line in tissue culture media capable of supporting the growth of the microorgranism while the cell line is being maintained. This large scale production allows for the development of vaccines for Toxoplasma microorganisms which previously have been hard to grow in the numbers needed to readily prepare vaccines, and allows for more rapid antibody detection procedures with regard to these microorganisms. There are also disclosed methods for preparing such vaccines, and methods for carrying out antibody detection assays.
Abstract:
Methods and pharmaceutical compositions for inactivating an envelope virus using an oil-in-water emulsion including an oil, a surfactant, and an organic phosphate-based solvent are disclosed. These methods can be used to inactivate a wide variety of envelope viruses, such as HIV.
Abstract:
Methods for inactivating bacteria including bacterial spores using an oil-in-water emulsion are provided. The oil-in-water emulsion comprises an oil, a surfactant and an organic phosphate-based solvent. These methods can be used to inactivate a wide variety of bacteria such as Bacillus.
Abstract:
Monoclonal antibodies against the A chain of ricin have been found to be ective in protecting mammals from morbidity arising from exposure to ricin toxin. The neutralizing action of the antibodies does not appear to be mediated by complement or by immunoprecipitation. The antibodies of the invention are characterized as of isotype IgG1 having the binding characteristics which include: a) binding specifically to the neutralizing epitope of the ricin A chain and b) providing in vitro protection of at least 95% of EL-4 cells from 100 .eta.g/mL ricin challenge when said antibody is present in the tissue culture at a level of at least 1000 .eta.g/mL.
Abstract:
An antibacterial oil-in-water emulsion for inhibiting the growth of Helicobacter pylori is disclosed. The oil-in-water emulsion of the invention comprises droplets of an oily discontinuous phase dispersed in a continuous phase. The oily discontinuous phase contains an oil carrier and a glycerol ester selected from the group consisting of glycerol monooleate and glycerol monostearate. The emulsion can be positively charged, negatively charged or chargeless. In one embodiment, the emulsion is positively charged and further comprises a cationic halogen-containing compound having a C.sub.12 -C.sub.16 chain as a positive charge producing agent. In another embodiment, the emulsion is negatively charged and further comprises an negative charge producing agent having a C.sub.12 -C.sub.22 chain. The disclosed emulsions can be administered to individuals, for example, orally, to treat or prevent Helicobacter pylori infections.
Abstract:
A process is disclosed for culturing clinical Staphylococcus epidermidis cells that reproducibly enables identification of a limited number of predominant serotypes. Two predominant serotypes common to most clinical cases of S. epidermidis have been identified and are denoted Type I and Type II. A particular polysaccharide surface antigen is associated with each of the Type I and Type II serotypes. The surface antigens can be used to provide active and passive immunization against S. epidermidis infection and to produce a hyperimmune immunoglobulin or antibodies for treatment of S. epidermidis infection.
Abstract:
The present invention concerns an oral preparation useful as an immunizing agent or vaccine against gram negative bacterial infection. This oral preparation can also be used as a treatment for those infected with gam negative bacteria. The preparations can be used against any gram negative bacterial infection, including Escherichia coli, Shigella flexneri 2a, and Salmonella enteriditis.
Abstract:
A novel formulation having anti-viral and spermicidal properties has been developed. The formulation contains lipid vesicles having an outer bilayer formed of a non-ionic amphiphile, a surfactant such as having spermicidal and/or anti-viral activity, an oil and a sterol. The selection of the components making the vesicle is such that the formulation provides rapid spermicidal or anti-viral activity. The formulation and methods of the invention are particularly useful in the mucous membranes such as the vaginal tract and has been tested against viruses such as HIV and Vaccinia.