Abstract:
High voltage-resistance of a switching device including a p-type region being in contact with a lower end of a bottom-insulating-layer is realized. The switching device includes a bottom-insulating-layer disposed at a bottom in a trench, and a gate electrode disposed on a front surface side of the bottom-insulating-layer. A semiconductor substrate includes a first n-type and p-type regions being in contact with the gate insulating film, a second p-type region being in contact with an end of the bottom-insulating-layer, and a second n-type region separating the second p-type region from the first p-type region. Distance A from a rear-surface-side-end of the first p-type region to a front-surface-side-end of the second p-type region, and distance B from a rear-surface-side-end of the-bottom-insulating layer to a rear-surface-side-end of the second p-type region satisfy A
Abstract:
A semiconductor device provided herein includes: a fourth region of a p-type being in contact with a lower end of the gate trench; a termination trench provided in the front surface in a range outside the second region; a lower end p-type region of the p-type being in contact with a lower end of the termination trench; a lateral p-type region of the p-type being in contact with a lateral surface of the termination trench on an outer circumferential side, connected to the lower end p-type region, and exposed on the front surface; and a plurality of guard ring regions provided on the outer circumferential side with respect to the lateral p-type region and exposed on the front surface.
Abstract:
A silicon carbide semiconductor device includes: a substrate; a drift layer; a current dispersion layer; a base region; a source region; trenches; a gate insulation film; a gate electrode; a source electrode; a drain electrode; and a bottom layer. The current dispersion layer is arranged on the drift layer, and has a first conductive type with an impurity concentration higher than the drift layer. The bottom layer has a second conductive type, is arranged under the base region, covers a bottom of each trench including a corner portion of the bottom of the trench, and has a depth equal to or deeper than the current dispersion layer.
Abstract:
An SiC semiconductor device has a p type region including a low concentration region and a high concentration region filled in a trench formed in a cell region. A p type column is provided by the low concentration region, and a p+ type deep layer is provided by the high concentration region. Thus, since a SJ structure can be made by the p type column and the n type column provided by the n type drift layer, an on-state resistance can be reduced. As a drain potential can be blocked by the p+ type deep layer, at turnoff, an electric field applied to the gate insulation film can be alleviated and thus breakage of the gate insulation film can be restricted. Therefore, the SiC semiconductor device can realize the reduction of the on-state resistance and the restriction of breakage of the gate insulation film.
Abstract:
A semiconductor device includes a semiconductor substrate and a metal film. The metal film is located on the semiconductor substrate. The metal film includes a portion to have a Schottky junction with the semiconductor substrate. The metal film is made of an aluminum alloy in which an element is added to aluminum. The metal film includes a lower metal layer and an upper metal layer. The lower metal layer is located on the semiconductor substrate. The upper metal layer stacks on the lower metal layer. The lower metal layer has a thickness of 2.6 micrometers or less in a stacking direction of the lower metal layer and the upper metal layer.
Abstract:
A semiconductor device includes a first conductivity-type drift region including an exposed portion, a plurality of second conductivity-type body regions, a first conductivity-type source region, a gate portion and a Schottky electrode. The drift region is defined in a semiconductor layer, and the exposed portion exposes on a surface of the semiconductor layer. The body regions are disposed on opposite sides of the exposed portion. The source region is separated from the drift region by the body region. The gate portion is disposed to oppose the body region. The exposed portion is formed with a groove, and the Schottky electrode is disposed in the groove. The Schottky electrode has a Schottky contact with the exposed portion.
Abstract:
A semiconductor device may include: a semiconductor substrate; a surface electrode covering a surface of the semiconductor substrate; an insulating protection film covering a part of a surface of the surface electrode; and a solder-bonding metal film, the solder-bonding metal film covering a range spreading from a surface of the insulating protection film to the surface of the surface electrode, wherein the surface electrode may include: a first metal film provided on the semiconductor substrate; a second metal film being in contact with a surface of the first metal film, and having tensile strength higher than tensile strength of the first metal film; and a third metal film being in contact with a surface of the second metal film, and having tensile strength which is lower than the tensile strength of the second metal film and is higher than the tensile strength of the first metal film.
Abstract:
A silicon carbide semiconductor device includes: an element isolation layer and an electric field relaxation layer. The element isolation layer is arranged, from the surface of a base region to be deeper than the base region, between a main cell region and a sense cell region, and isolates the main cell region from the sense cell region. The electric field relaxation layer is arranged from a bottom of the base region to be deeper than the element isolation layer. The electric field relaxation layer is divided into a main cell region portion and a sense cell region portion. At least a part of the element isolation layer is arranged inside of a division portion of the electric field relaxation layer.