Abstract:
A driver alert and de-rate control system for a vehicle includes a sensor configured to monitor an engine operating condition, and a control unit in communication with the sensor. The control unit is configured to estimate a time until automatic de-rate of the engine based on the engine operating condition and to modify a performance parameter of the vehicle in dependence upon the estimated time until automatic de-rate.
Abstract:
A control system for a vehicle includes an electric drive system associated with a first set of wheels (e.g., rear wheels) of a vehicle and a drive system control unit configured to control the electric drive system to selectively provide electric motive power to the first set of wheels to propel the vehicle and electric retarding to slow the vehicle. The system further includes a friction brake system having a first friction brake unit associated with the first set of wheels and a second friction brake unit associated with a second set of wheels (e.g., front wheels) of the vehicle. The drive system control unit is further configured, in at least one mode of operation, to independently control the first and second friction brake units to concurrently apply different levels of friction braking to the first and second sets of wheels, to reduce wear unevenness.
Abstract:
A braking system for a vehicle includes an electric drive system associated with a first set of wheels. The electric drive system is configured to selectively provide electric motive power to the first set of wheels of the vehicle to propel the vehicle and electric retarding to slow the vehicle. The system further includes a friction brake system associated with a second set of wheels of the vehicle, and a controller for selectively actuating the electric drive system to operate in an electric retarding mode and for selectively actuating the friction brake system. The controller is configured to transfer retarding force from the first set of wheels to the second set of wheels, and/or to determine wheel speed signal accuracies, in either case to mitigate vehicle/wheel sliding or slipping.
Abstract:
A control system for a vehicle includes an electric drive system associated with a first set of wheels. The electric drive system is configured to selectively provide electric motive power to the first set of wheels to propel the vehicle and electric retarding to slow the vehicle. The system further includes a friction brake system associated with one of the first set of wheels or a second set of wheels, a drive system control unit, and a friction brake control unit in electrical communication with the drive system control unit. The drive system control unit is configured to communicate with the friction brake control unit to control an amount of friction brake application during vehicle stops and starts on grade.
Abstract:
The present invention relates to an integrated cooling system for a vehicle. The system includes an engine cooling loop having a first fluid configured for circulation through an engine of the vehicle and a power electronics cooling loop having a second fluid configured for circulation through at least one power electronics component of the vehicle. The engine cooling loop is fluidly isolated from, and in thermal communication with, the power electronics cooling loop.
Abstract:
A driver alert and de-rate control system for a vehicle includes a sensor configured to monitor an engine operating condition, and a control unit in communication with the sensor. The control unit is configured to estimate a time until automatic de-rate of the engine based on the engine operating condition and to modify a performance parameter of the vehicle in dependence upon the estimated time until automatic de-rate.
Abstract:
An integrated mounting and cooling apparatus includes a housing body having a first mounting surface configured to receive electronic components to be cooled and a heat dissipation channel extending through the housing body under the first mounting surface. An array of cooling fins is disposed in the heat dissipation channel. The apparatus is configured to serve as a mounting surface for the electronic components, as a housing for the electronic components, and a heat-sink to cool the electronic components.
Abstract:
A control system for a vehicle includes an electric drive system associated with a first set of wheels (e.g., rear wheels) of a vehicle and a drive system control unit configured to control the electric drive system to selectively provide electric motive power to the first set of wheels to propel the vehicle and electric retarding to slow the vehicle. The system further includes a friction brake system having a first friction brake unit associated with the first set of wheels and a second friction brake unit associated with a second set of wheels (e.g., front wheels) of the vehicle. The drive system control unit is further configured, in at least one mode of operation, to independently control the first and second friction brake units to concurrently apply different levels of friction braking to the first and second sets of wheels, to reduce wear unevenness.
Abstract:
An integrated mounting and cooling apparatus includes a housing body having a first mounting surface configured to receive electronic components to be cooled and a heat dissipation channel extending through the housing body under the first mounting surface. An array of cooling fins is disposed in the heat dissipation channel. The apparatus is configured to serve as a mounting surface for the electronic components, as a housing for the electronic components, and a heat-sink to cool the electronic components.