Abstract:
Integrated circuits that include SRAM cells having additional read stacks are provided. In accordance with one embodiment an integrated circuit includes a memory storage array of memory cells. The integrated circuit includes a read stack coupled to each memory cell of the memory storage array. Each read stack includes a read pull-down transistor having a first threshold voltage, and a read pass gate transistor coupled in series with the read pull down transistor and having a second threshold voltage greater than the first threshold voltage.
Abstract:
A semiconductor structure includes a split gate nonvolatile memory cell and a high voltage transistor. The nonvolatile memory cell includes an active region, a nonvolatile memory stack provided above the active region, a control gate electrode provided above the memory stack, a select gate electrode at least partially provided above the active region adjacent to the memory stack and a select gate insulation layer. The high voltage transistor includes an active region, a gate electrode and a gate insulation layer provided between the active region and the gate electrode. The select gate insulation layer of the nonvolatile memory device and the gate insulation layer of the high voltage transistor are at least partially formed of a same high-k dielectric material. The select gate electrode of the nonvolatile memory device and the gate electrode of the high voltage transistor are at least partially formed of a same metal.
Abstract:
An illustrative semiconductor structure described herein includes a substrate including a logic transistor region, a ferroelectric transistor region and an input/output transistor region. A logic transistor is provided at the logic transistor region. The logic transistor includes a gate dielectric and a gate electrode. An input/output transistor is provided at the input/output transistor region. The input/output transistor includes a gate dielectric and a gate electrode. The gate dielectric of the input/output transistor has a greater thickness than the gate dielectric of the logic transistor. A ferroelectric transistor is provided at the ferroelectric transistor region. The ferroelectric transistor includes a ferroelectric dielectric and a gate electrode. The ferroelectric dielectric is arranged between the ferroelectric transistor region and the gate electrode of the ferroelectric transistor.
Abstract:
Integrated circuits that include SRAM cells having additional read stacks are provided. In accordance with one embodiment an integrated circuit includes a memory storage array of memory cells. The integrated circuit includes a read stack coupled to each memory cell of the memory storage array. Each read stack includes a read pull-down transistor having a first threshold voltage, and a read pass gate transistor coupled in series with the read pull down transistor and having a second threshold voltage greater than the first threshold voltage.
Abstract:
A semiconductor structure includes a split gate nonvolatile memory cell and a high voltage transistor. The nonvolatile memory cell includes an active region, a nonvolatile memory stack provided above the active region, a control gate electrode provided above the memory stack, a select gate electrode at least partially provided above the active region adjacent to the memory stack and a select gate insulation layer. The high voltage transistor includes an active region, a gate electrode and a gate insulation layer provided between the active region and the gate electrode. The select gate insulation layer of the nonvolatile memory device and the gate insulation layer of the high voltage transistor are at least partially formed of a same high-k dielectric material. The select gate electrode of the nonvolatile memory device and the gate electrode of the high voltage transistor are at least partially formed of a same metal.
Abstract:
A method includes providing a semiconductor structure. The semiconductor structure includes a first transistor region, a second transistor region and a silicon dioxide layer on the first transistor region and the second transistor region. A layer of a high-k dielectric material is deposited on the silicon dioxide layer. A layer of a first metal is formed over the second transistor region. The layer of first metal does not cover the first transistor region. After the formation of the layer of the first metal, a layer of a second metal is deposited over the first transistor region and the second transistor region. A first annealing process is performed. The first annealing process initiates a scavenging reaction between the second metal and silicon dioxide from a portion of the silicon dioxide layer on the first transistor region. After the annealing process, a ferroelectric transistor dielectric is formed over the first transistor region.
Abstract:
An illustrative method disclosed herein includes providing a semiconductor structure. The semiconductor structure includes a logic transistor region, a ferroelectric transistor region and an input/output transistor region. A first protection layer is formed over the semiconductor structure. The first protection layer covers the logic transistor region and the input/output transistor region. At least a portion of the ferroelectric transistor region is not covered by the first protection layer. After the formation of the first protection layer, a ferroelectric transistor dielectric is deposited over the semiconductor structure, the ferroelectric transistor dielectric and the first protection layer are removed from the logic transistor region and the input/output transistor region, an input/output transistor dielectric is formed over the input/output transistor region and a logic transistor dielectric is formed over at least the logic transistor region.
Abstract:
An illustrative semiconductor structure described herein includes a substrate including a logic transistor region, a ferroelectric transistor region and an input/output transistor region. A logic transistor is provided at the logic transistor region. The logic transistor includes a gate dielectric and a gate electrode. An input/output transistor is provided at the input/output transistor region. The input/output transistor includes a gate dielectric and a gate electrode. The gate dielectric of the input/output transistor has a greater thickness than the gate dielectric of the logic transistor. A ferroelectric transistor is provided at the ferroelectric transistor region. The ferroelectric transistor includes a ferroelectric dielectric and a gate electrode. The ferroelectric dielectric is arranged between the ferroelectric transistor region and the gate electrode of the ferroelectric transistor.
Abstract:
A method includes providing a semiconductor structure. The semiconductor structure includes a first transistor region, a second transistor region and a silicon dioxide layer on the first transistor region and the second transistor region. A layer of a high-k dielectric material is deposited on the silicon dioxide layer. A layer of a first metal is formed over the second transistor region. The layer of first metal does not cover the first transistor region. After the formation of the layer of the first metal, a layer of a second metal is deposited over the first transistor region and the second transistor region. A first annealing process is performed. The first annealing process initiates a scavenging reaction between the second metal and silicon dioxide from a portion of the silicon dioxide layer on the first transistor region. After the annealing process, a ferroelectric transistor dielectric is formed over the first transistor region.
Abstract:
An illustrative method disclosed herein includes providing a semiconductor structure. The semiconductor structure includes a logic transistor region, a ferroelectric transistor region and an input/output transistor region. A first protection layer is formed over the semiconductor structure. The first protection layer covers the logic transistor region and the input/output transistor region. At least a portion of the ferroelectric transistor region is not covered by the first protection layer. After the formation of the first protection layer, a ferroelectric transistor dielectric is deposited over the semiconductor structure, the ferroelectric transistor dielectric and the first protection layer are removed from the logic transistor region and the input/output transistor region, an input/output transistor dielectric is formed over the input/output transistor region and a logic transistor dielectric is formed over at least the logic transistor region.