Abstract:
One method includes positioning a front side of a first substrate opposite a side of a second substrate, the first substrate comprising an ESD mitigation structure located at an approximate center of the front side, the second substrate comprising at least one TSV structure that extends through the side of the second substrate, the first substrate and the second substrates adapted to be positioned so as to result in the conductive coupling of the at least one TSV structure and the ESD mitigation structure, bending the first substrate to an initial contact position such that an initial engagement between the first substrate and the second substrate will result in conductively coupling between the ESD mitigation structure and the TSV structure, and engaging the first and second substrates with one another such that the ESD mitigation structure and the TSV structure are conductively coupled to one another.
Abstract:
At least one method, apparatus and system disclosed involves performing a dynamic voltage compensation in an integrated circuit. A first voltage on a first portion of an integrated circuit is received. A second voltage on a second portion of the integrated circuit is monitored. A determination is made as to whether the second voltage fell below the first voltage by a predetermined margin. A feedback adjustment of the of the second voltage is performed in response to a determination that the second voltage fell below the first voltage by the predetermined margin; the feedback adjustment comprises performing a step up of the second voltage.
Abstract:
A method of redirecting signal bits associated with or corresponding to defective TSVs of a TSV array to a row or a column of redundant TSVs in the TSV array using a 2:4 Decoder and 4:2 Encoder and the resulting device are provided. Embodiments include forming a TSV array between a bottom die and a top die of a 3D IC stack, the TSV array having a row and a column of redundant TSVs; identifying a defective TSV of the TSV array; determining whether to shift a signal bit associated with or corresponding to the defective TSV in a first and/or a second direction towards the row or the column of redundant TSVs; and shifting the signal bit in the first and/or the second direction until the signal bit has been redirected to the row or the column of redundant TSVs.
Abstract:
A product disclosed herein includes an RF filter die including an RF filter, a front side and a plurality of conductive bond pads conductively coupled to at least a portion of the RF filter, wherein at least a portion of the conductive bond pads is exposed on the front side of the RF filter die. The product also includes a TSV (Through-Substrate-Via) die that includes a plurality of conductive TSV contacts positioned on a back side of the TSV die and at least one conductive TSV (Through-Substrate-Via) structure that is conductively coupled to at least one of the plurality of conductive TSV contacts, wherein the back side of the TSV die is bonded to the front side of the RF filter such that the conductive bond pads on the RF filter die are conductively coupled to corresponding conductive TSV contacts positioned on the back side of the TSV die.
Abstract:
Monolithic three-dimensional integration can achieve higher device density compared to 3D integration using through-silicon vias. A test solution for M3D integrated circuits (ICs) is based on dedicated test layers inserted between functional layers. A structure includes a first functional layer having first functional components of the IC with first test scan chains and a second functional layer having second functional components of the IC with second test scan chains. A dedicated test layer is located between the first functional layer and the second functional layer. The test layer includes an interface register controlling signals from a testing module to one of the first test scan chains and the second test scan chains, and an instruction register connected to the interface register. The instruction register processes testing instructions from the testing module. Inter-layer vias connect the first functional components, the second functional components, and the testing module through the test layer.
Abstract:
At least one method, apparatus and system disclosed involves performing a dynamic voltage compensation in an integrated circuit. A first voltage on a first portion of an integrated circuit is received. A second voltage on a second portion of the integrated circuit is monitored. A determination is made as to whether the second voltage fell below the first voltage by a predetermined margin. A feedback adjustment of the of the second voltage is performed in response to a determination that the second voltage fell below the first voltage by the predetermined margin; the feedback adjustment comprises performing a step up of the second voltage.
Abstract:
Device structures for a metal-insulator-metal (MIM) capacitor, as well as methods of fabricating a device structure for a MIM capacitor. An active device level is formed on a substrate, a local interconnect level is formed on the active device level, and a metal-insulator-metal capacitor is formed in a via opening with a sidewall extending through the local interconnect level and the active device level to a given depth in the substrate. The metal-insulator-metal capacitor includes a first plate on the sidewall, a second plate, and an interplate dielectric between the first plate and the second plate.
Abstract:
Methods of testing TSVs using eFuse cells prior to and post bonding wafers in a 3D IC stack are provided. Embodiments include providing a wafer of a 3D IC stack, the wafer having thin and thick metal layers; forming first and second TSVs on the wafer, the first and second TSVs laterally separated; forming an eFuse cell between and separated from the first and second TSVs; forming a FF adjacent to the second TSV and on an opposite side of the second TSV from the eFuse cell; connecting the first TSV, the eFuse cell, the second TSV, and the FF in series in an electric circuit; and testing the first and second TSVs prior to bonding the wafer to a subsequent wafer in the 3D IC stack.
Abstract:
One method includes positioning a front side of a first substrate opposite a side of a second substrate, the first substrate comprising an ESD mitigation structure located at an approximate center of the front side, the second substrate comprising at least one TSV structure that extends through the side of the second substrate, the first substrate and the second substrates adapted to be positioned so as to result in the conductive coupling of the at least one TSV structure and the ESD mitigation structure, bending the first substrate to an initial contact position such that an initial engagement between the first substrate and the second substrate will result in conductively coupling between the ESD mitigation structure and the TSV structure, and engaging the first and second substrates with one another such that the ESD mitigation structure and the TSV structure are conductively coupled to one another.
Abstract:
Device structures for a metal-insulator-metal (MIM) capacitor, as well as methods of fabricating a device structure for a MIM capacitor. An active device level is formed on a substrate, a local interconnect level is formed on the active device level, and a metal-insulator-metal capacitor is formed in a via opening with a sidewall extending through the local interconnect level and the active device level to a given depth in the substrate. The metal-insulator-metal capacitor includes a first plate on the sidewall, a second plate, and an interplate dielectric between the first plate and the second plate.