Abstract:
Container structures for use in integrated circuits and methods of their manufacture without the use of mechanical planarization such as chemical-mechanical planarization (CMP), thus eliminating CMP-induced defects and variations. The methods utilize localized masking of holes for protection of the inside of the holes during non-mechanical removal of exposed surface layers. The localized masking is accomplished through differential exposure of a resist layer to electromagnetic or thermal energy. The container structures are adapted for use in memory cells and apparatus incorporating such memory cells, as well as other integrated circuits.
Abstract:
The present invention provides an MRAM cell which minimizes the occurrence of electrical shorts during fabrication. A first conductor is provided in a trench in an insulating layer and an upper surface of the insulating layer and the first conductor is planarized. A first dielectric layer is deposited over the first conductor and insulating layer to a thickness at least greater than the thickness of a desired MRAM cell. The first dielectric layer is patterned and etched to form an opening over the first conductor for the cell shapes. The magnetic layers comprising the MRAM cell are consecutively formed within the cell shapes and the first dielectric layer.
Abstract:
Structures and methods for making a semiconductor structure are discussed. The semiconductor structure includes a rough surface having protrusions formed from an undoped silicon film. If the semiconductor structure is a capacitor, the protrusions help to increase the capacitance of the capacitor. The semiconductor structure also includes a relatively smooth surface abutting the rough surface, wherein the relatively smooth surface is formed from a polycrystalline material.
Abstract:
The present invention provides a method of forming an MRAM cell which minimizes the occurrence of electrical shorts during fabrication. A first conductor is provided in a trench in an insulating layer and an upper surface of the insulating layer and the first conductor is planarized. Then, a first dielectric layer is deposited over the first conductor and insulating layer to a thickness at least greater than the thickness of a desired MRAM cell. The first dielectric layer is then patterned and etched to form an opening over the first conductor for the cell shapes. Then, the magnetic layers comprising the MRAM cell are consecutively formed within the cell shapes and the first dielectric layer.
Abstract:
The present invention provides an etching composition which includes a polyhydric alcohol in combination with two inorganic acids. Preferably the etching composition of the present invention is a mixture of a glycol, nitric acid and hydrofluoric acid, with propylene glycol being preferred. The etching composition of the present invention achieves a selectivity of greater than 70:1, doped material to undoped material. The present invention provides an etching formulation which has increased selectivity of doped polysilicon to undoped polysilicon and provides an efficient integrated circuit fabrication process without requiring time consuming and costly processing modifications to the etching apparatus or production apparatus.
Abstract:
Lower electrodes of capacitors composed of a texturizing underlayer and a conductive material overlayer are provided. The lower electrodes have an upper roughened surface. In one embodiment, the texturizing layer is composed of porous or relief nanostructures comprising a polymeric material, for example, silicon oxycarbide. In another embodiment, the texturizing underlayer is in the form of surface dislocations composed of annealed first and second conductive metal layers, and the conductive metal overlayer is agglomerated onto the surface dislocations as nanostructures in the form of island clusters.
Abstract:
A semiconductor structure includes a dielectric layer having first and second opposing sides. A conductive layer is adjacent to the first side of the dielectric layer and is coupled to a first terminal, and a conductive barrier layer is adjacent to the second side of the dielectric layer and is coupled to a second terminal. The conductive barrier layer may be formed from tungsten nitride, tungsten silicon nitride, titanium silicon nitride or other barrier material.
Abstract:
A dielectric insulating composite for insulating a floating gate from a control gate in a non-volatile memory is described. A material, such as an undoped polysilicon, amorphous silicon, or amorphous polysilicon or a silicon rich nitride, is inserted in the gate structure. The oxide film that results from the oxidation of these films is relatively free from impurities. As a result, charge leakage between the floating gate and control gate is reduced.
Abstract:
Semiconductor processing methods and defect detection methods are described. In one embodiment, a semiconductor wafer in process is provided and a material is formed or deposited over the wafer. The material is discernably deposited over defective wafer surface areas and not appreciably deposited over non-defective wafer surface areas. Subsequently, the wafer surface areas are inspected to identify defective areas. In another embodiment, a substrate is provided having an exposed region containing surface defects. A defect-highlighting material is substantially selectively deposited over surface defects and not appreciably over other exposed regions. The substrate is subsequently inspected for the deposited defect-highlighting material. In yet another embodiment, a dielectric layer is formed over a substrate outer surface and the substrate is processed in a manner which can give rise to a plurality of randomly-distributed dielectric layer features. A silicon-containing material is substantially selectively deposited and received over the randomly-distributed dielectric layer features and not over other substrate areas. The substrate is subsequently inspected for the selectively-deposited silicon-containing material.
Abstract:
A semiconductor structure includes a dielectric layer having first and second opposing sides. A conductive layer is adjacent to the first side of the dielectric layer and is coupled to a first terminal, and a conductive barrier layer is adjacent to the second side of the dielectric layer and is coupled to a second terminal. The conductive barrier layer may be formed from tungsten nitride, tungsten silicon nitride, titanium silicon nitride or other barrier materials.