摘要:
An object of the present invention is to provide: a wiring method in which wiring is performed in a vacuum chamber of a charged particle device without using gas deposition or the like; and a charged particle device.In order to achieve the above-described object, the present invention proposes: a wiring method in which a wiring line composed of an ionic liquid is formed by dropping an ionic liquid on a sample or preparing an ionic liquid on a sample table, on which a sample is placed in advance, and irradiating a wiring track between a wiring start point and a wiring end point with a charged particle beam; and a charged particle device. According to this configuration, wiring can be performed in a vacuum chamber of a charged particle device without using a gas deposition method or the like.
摘要:
An object of the present invention is to provide: a wiring method in which wiring is performed in a vacuum chamber of a charged particle device without using gas deposition or the like; and a charged particle device.In order to achieve the above-described object, the present invention proposes: a wiring method in which a wiring line composed of an ionic liquid is formed by dropping an ionic liquid on a sample or preparing an ionic liquid on a sample table, on which a sample is placed in advance, and irradiating a wiring track between a wiring start point and a wiring end point with a charged particle beam; and a charged particle device. According to this configuration, wiring can be performed in a vacuum chamber of a charged particle device without using a gas deposition method or the like.
摘要:
A device for observing a specimen, such as a charged particle beam device exemplified by a scanning electron microscope and a transmission electron microscope in which an operator can specify minute bubbles with high contrast in a charged particle beam image of a liquid subjected to processing of generating bubbles, using a phenomenon in which contrast as high as an operator can specify minute bubbles is provided in a charged particle beam image of a specimen including an ionic liquid and a liquid subjected to processing of generating bubbles, thus making it possible to recognize minute bubbles in a liquid.
摘要:
An object of the present invention is to provide: a wiring method in which wiring is performed in a vacuum chamber of a charged particle device without using gas deposition or the like; and a charged particle device.In order to achieve the above-described object, the present invention proposes: a wiring method in which a wiring line composed of an ionic liquid is formed by dropping an ionic liquid on a sample or preparing an ionic liquid on a sample table, on which a sample is placed in advance, and irradiating a wiring track between a wiring start point and a wiring end point with a charged particle beam; and a charged particle device. According to this configuration, wiring can be performed in a vacuum chamber of a charged particle device without using a gas deposition method or the like.
摘要:
Provided is means which enables observation of the shape of a specimen as it is without deforming the specimen. Observation is made by allowing a specimen-holding member having an opening (for example, microgrid and mesh) to hold an ionic liquid and charging a specimen thereto, to allow the specimen to suspend in the ionic liquid. Furthermore, in the proximity of the specimen-holding member, a mechanism of injecting an ionic liquid (ionic liquid introduction mechanism) and/or an electrode are provided. When a voltage is applied to the electrode, the specimen moves or deforms in the ionic liquid. How the specimen moves or deforms can be observed. Furthermore, in the proximity of specimen-holding member, an evaporation apparatus is provided to enable charge of the specimen into the ionic liquid while evaporating. Furthermore, in the proximity of the specimen-holding member, a microcapillary is provided to charge a liquid-state specimen into the ionic liquid. Note that the specimen-holding member is designed to be rotatable.
摘要:
The electrical charging by a primary electronic is inhibited to produce a clear edge contrast from an observation specimen (i.e., a specimen to be observed), whereby the shape of the surface of a sample can be measured with high accuracy. An observation specimen in which a liquid medium comprising an ionic liquid is formed in a thin-film-like or a webbing-film-like form on a sample is used. An electron microscopy using the observation specimen comprises: a step of measuring the thickness of a liquid medium comprising an ionic liquid on a sample; a step of controlling the conditions for irradiation with a primary electron on the basis of the thickness of the liquid medium comprising the ionic liquid; and a step of irradiating the sample with the primary electron under the above-mentioned primary electron irradiation conditions to form an image of the shape of the sample.
摘要:
The electrical charging by a primary electronic is inhibited to produce a clear edge contrast from an observation specimen (i.e., a specimen to be observed), whereby the shape of the surface of a sample can be measured with high accuracy. An observation specimen in which a liquid medium comprising an ionic liquid is formed in a thin-film-like or a webbing-film-like form on a sample is used. An electron microscopy using the observation specimen comprises: a step of measuring the thickness of a liquid medium comprising an ionic liquid on a sample; a step of controlling the conditions for irradiation with a primary electron on the basis of the thickness of the liquid medium comprising the ionic liquid; and a step of irradiating the sample with the primary electron under the above-mentioned primary electron irradiation conditions to form an image of the shape of the sample.