Abstract:
A substrate includes on its surface an array of dual stack semiconductor fins, each fin comprising a monocrystalline first portion, a polycrystalline second portion, and a mask third portion. Trenches between the fins are filled with shallow trench isolation (STI) oxide and with polycrystalline material, after which the surface is planarized. Then a second mask is produced on the planarized surface, the second mask defining at least one opening, each defined opening extending across an exposed fin. A thermal oxidation is performed of the polycrystalline material on either side of the exposed fin in each defined opening, thereby producing two oxide strips in each defined opening. Using the second mask and the oxide strips as a mask for self-aligned etching, the material of the exposed dual stack fins is removed and subsequently replaced by an electrically isolating material, thereby creating gate cut structures.
Abstract:
A method for forming a cavity in a semiconductor structure and an intermediate structure is provided. The method includes: (a) providing a semiconductor structure comprising: (i) a semiconductor substrate; (ii) a set of line structures on the semiconductor substrate, each line structure having a top surface and sidewalls, the line structures being separated by trenches therebetween, and (iii) an oxygen-containing dielectric material at least partially filling the trenches in-between the line structures, wherein the top surface of at least one of the line structures is at least partially exposed, and wherein the exposed part of the top surface is composed of an oxygen-free dielectric material; (b) forming a layer of TaSix selectively onto the oxygen-free dielectric material with respect to the oxygen-containing dielectric material (c) forming the cavity by selectively removing at least a portion of the oxygen-containing dielectric material with respect to the TaSix.
Abstract:
A method for lithographic patterning of a substrate is described. The method comprises obtaining a substrate to be patterned. It further comprises subsequently performing at least twice the following cycle: applying a lithographical patterning process of a thermally shrinkable metal-oxide layer for forming a metal-oxide pattern, and thermally shrinking the metal-oxide pattern. The different metal oxide patterns formed during the at least two cycles are positioned in proximity to each other such that the shrunk metal-oxide patterns form together an overall pattern to be transferred to the substrate. After performing the cycle at least twice, the overall pattern is transferred to the substrate.
Abstract:
An example method for making a reticle includes providing an assembly. The assembly includes an extreme ultraviolet mirror and a cavity overlaying at least a bottom part of the extreme ultraviolet mirror. The method also includes at least partially filling the cavity with an extreme ultraviolet absorbing structure that includes a metallic material that includes an element selected from Ni, Co, Sb, Ag, In, and Sn, by forming the extreme ultraviolet absorbing structure selectively in the cavity.
Abstract:
The present disclosure is related to a method for treating a photoresist structure on a substrate, the method comprising producing one or more resist structures on a substrate, introducing the substrate in a plasma reactor, and subjecting the substrate to a plasma treatment at a temperature lower than zero degrees Celsius, such as between zero and −110° C. The plasma treatment may be a H2 plasma treatment performed in an inductively coupled plasma reactor. The treatment time may be at least 30s.
Abstract:
A method for lithographic patterning of a substrate is described. The method comprises obtaining a substrate to be patterned. It further comprises subsequently performing at least twice the following cycle: applying a lithographical patterning process of a thermally shrinkable metal-oxide layer for forming a metal-oxide pattern, and thermally shrinking the metal-oxide pattern. The different metal oxide patterns formed during the at least two cycles are positioned in proximity to each other such that the shrunk metal-oxide patterns form together an overall pattern to be transferred to the substrate. After performing the cycle at least twice, the overall pattern is transferred to the substrate.
Abstract:
The present disclosure is related to a method for treating a photoresist structure on a substrate, the method comprising producing one or more resist structures on a substrate, introducing the substrate in a plasma reactor, and subjecting the substrate to a plasma treatment at a temperature lower than zero degrees Celsius, such as between zero and −110° C. The plasma treatment may be a H2 plasma treatment performed in an inductively coupled plasma reactor. The treatment time may be at least 30 s.
Abstract:
According to an aspect of the disclosed technology, there is provided a method comprising: providing a substrate, the substrate supporting an STI-layer and a set of fin structures, each fin structure comprising an upper portion protruding above the STI-layer, forming a spacer layer over the upper portions of the set of fin structures and the STI-layer, forming a sacrificial layer over the spacer layer, the sacrificial layer at least partially embedding the upper portions of the fin structures, partially etching back the sacrificial layer to expose spacer layer portions above upper surfaces of the upper portions of the set of fin structures, and etching the spacer layer and exposing at least the upper surfaces of the upper portions of the set of fin structures, while the sacrificial layer at least partially masks spacer layer portions above the STI-layer.
Abstract:
The disclosed technology is related to a method that includes the formation of contact vias for contacting gate electrodes and source (S) or drain (D) electrodes of nano-sized semiconductor transistors formed on a semiconductor wafer. The electrodes are mutually parallel and provided with dielectric gate and S/D plugs on top of the electrodes, and the mutually parallel electrode/plug assemblies are separated by dielectric spacers. The formation of the vias takes place by two separate self-aligned etch processes, the Vint-A etch for forming one or more vias towards one or more S/D electrodes and the Vint-G etch for forming one or more vias towards one or more gate electrodes. According to the disclosed technology, a conformal layer is deposited on the wafer after the first self-aligned etch process, wherein the conformal layer is resistant to the second self-aligned etch process. The conformal layer thereby protects the first contact via during the second self-aligned etch.
Abstract:
A method for producing a pillar structure in a semiconductor layer, the method including providing a structure including, on a main surface, a semiconductor layer. A patterned hard mask layer stack is provided on the semiconductor layer that includes a first layer in contact with the semiconductor layer and a second layer overlying and in contact with the first layer. The semiconductor layer is etched using the patterned hard mask layer stack as a mask. The etching includes subjecting the structure to a first plasma thereby removing a first part of the semiconductor layer and at least a part of the second layer while preserving the first layer thereby, producing a first part of the pillar structure, thereafter; and subjecting the structure to a second plasma thereby removing a second part of the semiconductor layer thereby, producing a second part of the pillar structure.