Abstract:
A laminating device for composite material includes a laser device, a hot roller assembly which has a first hot roller and a second hot roller, a cool roller assembly which has a first cool roller and a second cool roller, an axial roller-driving unit and a spring force-adjusting unit. The laser device provides a laser beam onto laminating surfaces of two separate composite materials prior to the hot roller assembly. The axial roller-driving unit drives the first hot roller and the second hot roller, and the first cool roller and the second cool roller, to undergo relative movement in a first direction. The spring force-adjusting unit provides spring forcing to the first hot roller and the second hot roller, and the first cool roller and the second cool roller, to ensure further the lamination of the two composite materials.
Abstract:
A three dimensional tissue printing method is disclosed. The three dimensional tissue printing method includes the following steps: performing large support stand printing to form a first printing body; performing small support stand printing to form second printing body on the first printing body and forming a tissue structure by crossly connecting in between the first printing body and the second printing body. Besides, a three dimensional tissue printing device and artificial skin are also presented.
Abstract:
A three dimensional tissue printing method is disclosed. The three dimensional tissue printing method includes the following steps: performing large support stand printing to form a first printing body; performing small support stand printing to form second printing body on the first printing body and forming a tissue structure by crossly connecting in between the first printing body and the second printing body. Besides, a three dimensional tissue printing device and artificial skin are also presented.
Abstract:
The disclosure relates to a tape laying apparatus configured to lay prepreg tape to mould surface. The tape laying apparatus includes a tape supply spool, a compaction head, a cutting tool and at least one travel distance adjustment component. The tape supply spool is configured for the prepreg tape to be wound thereon. The compaction head is configured for delivering the prepreg tape to the mould surface from the tape supply spool. The cutting tool is movable along a cutting path. The cutting tool is configured to cut the prepreg tape passing through the cutting path. The at least one travel distance adjustment component is movably located between the cutting path and the compaction head and configured to push the prepreg tape passing through the cutting path so as to increase or decrease a travel distance of the prepreg tape from the cutting path to the compaction head.
Abstract:
A three dimensional tissue printing method is disclosed. The three dimensional tissue printing method includes the following steps: performing large support stand printing to form a first printing body; performing small support stand printing to form second printing body on the first printing body and forming a tissue structure by crossly connecting in between the first printing body and the second printing body. Besides, a three dimensional tissue printing device and artificial skin are also presented.
Abstract:
An embodiment of the invention provides a compound barrier layer, including: a first barrier layer disposed on a substrate; and a second barrier layer disposed on the first barrier layer, wherein the first barrier layer and second barrier layer both include a plurality of alternately arranged inorganic material regions and organo-silicon material regions and the inorganic material regions and the organo-silicon material regions of the first barrier layer and second barrier layer are alternatively stacked vertically.