Abstract:
A memory device structure includes a vertical transistor having a channel between a source and a drain, a gate electrode adjacent the channel, where the gate electrode is in a first direction orthogonal to a longitudinal axis of the channel. A gate dielectric layer is between the gate electrode and the channel A first terminal of a first interconnect is coupled with the source or the drain, where the first interconnect is colinear with the longitudinal axis. The memory device structure further includes a pair of memory cells, where individual ones of the memory cells includes a selector and a memory element, where a first terminal of the individual ones of the memory cell is coupled to a respective second and a third terminal of the first interconnect. A second terminal of the individual ones of the memory cell is coupled to individual ones of the pair of second interconnects.
Abstract:
A memory structure includes a plurality of memory cells between a first and a second terminal and a pair of first conductors within a first tier, where individual ones of the first conductors are coupled to the first terminal of a first adjacent pair of memory cells in a first row orthogonal to the first conductors. The memory structure further includes a pair of second conductors within a second tier and parallel to the first conductors, where individual ones of the second conductors are coupled to the first terminal of a second adjacent pair of memory cells in a second row. The memory structure further includes a third conductor between the first and second tiers, and between each of the pair of the first conductors and the pair of the second conductors. The third conductor is coupled to second terminals of both the first and second adjacent pairs of memory cells.
Abstract:
Cross point memory architectures, devices, systems, and methods are disclosed and described, and can include a cross point memory core subsystem having increased bandwidth that is scalable. The memory core can include a plurality of independently operating partitions, each comprising a plurality of cross point memory arrays.
Abstract:
The present disclosure relates to reference and sense architecture in a cross-point memory. An apparatus may include a memory controller configured to select a target memory cell for a memory access operation. The memory controller includes word line (WL) switch circuitry configured to select a global WL (GWL) and a local WL (LWL) associated with the target memory cell; bit line (BL) switch circuitry configured to select a global BL (GBL) and a local BL (LBL) associated with the target memory cell; and sense circuitry including a first sense circuitry capacitance and a second sense circuitry capacitance, the sense circuitry configured to precharge the selected GWL, the LWL and the first sense circuitry capacitance to a WL bias voltage WLVDM, produce a reference voltage (VREF) utilizing charge on the selected GWL and charge on the first sense circuitry capacitance and determine a state of the target memory cell based, at least in part, on VREF and a detected memory cell voltage VLWL.
Abstract:
Cross point memory architectures, devices, systems, and methods are disclosed and described, and can include a cross point memory core subsystem having increased bandwidth that is scalable. The memory core can include a plurality of independently operating partitions, each comprising a plurality of cross point memory arrays.
Abstract:
Cross point memory architectures, devices, systems, and methods are disclosed and described, and can include a cross point memory core subsystem having increased bandwidth that is scalable. The memory core can include a plurality of independently operating partitions, each comprising a plurality of cross point memory arrays.
Abstract:
The present disclosure relates to reference and sense architecture in a cross-point memory. An apparatus may include a memory controller configured to select a target memory cell for a memory access operation. The memory controller includes word line (WL) switch circuitry configured to select a global WL (GWL) and a local WL (LWL) associated with the target memory cell; bit line (BL) switch circuitry configured to select a global BL (GBL) and a local BL (LBL) associated with the target memory cell; and sense circuitry including a first sense circuitry capacitance and a second sense circuitry capacitance, the sense circuitry configured to precharge the selected GWL, the LWL and the first sense circuitry capacitance to a WL bias voltage WLVDM, produce a reference voltage (VREF) utilizing charge on the selected GWL and charge on the first sense circuitry capacitance and determine a state of the target memory cell based, at least in part, on VREF and a detected memory cell voltage VLWL.
Abstract:
Thermally-regulated electronic devices, structures, and systems having incorporated high thermal conductivity dielectric (HTCD) materials are disclosed and described, including associated methods.
Abstract:
The present disclosure relates to reference and sense architecture in a cross-point memory. An apparatus may include a memory controller configured to select a target memory cell for a memory access operation. The memory controller includes word line (WL) switch circuitry configured to select a global WL (GWL) and a local WL (LWL) associated with the target memory cell; bit line (BL) switch circuitry configured to select a global BL (GBL) and a local BL (LBL) associated with the target memory cell; and sense circuitry including a first sense circuitry capacitance and a second sense circuitry capacitance, the sense circuitry configured to precharge the selected GWL, the LWL and the first sense circuitry capacitance to a WL bias voltage WLVDM, produce a reference voltage (VREF) utilizing charge on the selected GWL and charge on the first sense circuitry capacitance and determine a state of the target memory cell based, at least in part, on VREF and a detected memory cell voltage VLWL.
Abstract:
A memory device including a memory array and address lines; and decoder circuitry to apply a first bias to a WL coupled to a memory cell selected for a memory operation, a second bias to a BL coupled to the selected memory cell, and one or more neutral biases to the other BLs and WLs of the memory array; wherein the decoder circuitry comprises a plurality of bias circuits coupled to the address lines, a first bias circuit of the plurality of bias circuits comprising a transistor pair and an additional transistor coupled to an address line of the plurality of address lines, wherein the bias circuit is to apply, to the address line, the first bias through the transistor pair in a first state, the second bias through the transistor pair in a second state, and the neutral bias through the additional transistor in a third state.