Abstract:
A method of processing a substrate is provided. The method includes forming a first oxide layer on the substrate and patterning the first oxide layer utilizing a lithography process, the patterning defining a plurality of active areas on the substrate. The method includes forming a second oxide layer in each active area and forming a plurality of metal electrodes over the second oxide layer through a shadow mask technique, wherein the shadow mask technique is performed without alignment to an active area.
Abstract:
Provided are methods of high productivity combinatorial (HPC) screening of work function materials. Multiple test materials may be deposited as separate blanket layers on the same substrate while still forming individual interfaces with a common base layer. The thickness of each test material layer ensures that its work function properties are not impacted when other layers are deposited over that layer. A method may involve depositing a blocking layer over the base layer and selectively removing the blocking layer from a first site isolated region. A first test material is then deposited as a blanket layer and forms an interface with the base layer in that first region only. The first test material layer and the blocking layer are selectively removed from a second site isolated region followed by depositing a second test material layer as another blanket layer, which forms an interface with the base layer in the second region only.
Abstract:
Methods and apparatus for processing using a remote plasma source are disclosed. The apparatus includes an outer chamber enclosing a substrate support, a remote plasma source, and a showerhead. A substrate heater can be mounted in the substrate support. A transport system moves the substrate support and is capable of positioning the substrate. The remote plasma source may be used to provide a plasma surface treatment or as a source to incorporate dopants into a pre-deposited layer.
Abstract:
Devices with lightly-doped semiconductor channels (e.g., FinFETs) need mid-gap (˜4.6-4.7 eV) work-function layers, preferably with low resistivity and a wide process window, in the gate stack. Tantalum carbide (TaC) has a mid-gap work function that is insensitive to thickness. TaC can be deposited with good adhesion on high-k materials or on optional metal-nitride cap layers. TaC can also serve as the fill metal, or it can be used with other fills such as tungsten (W) or aluminum (Al). The TaC may be sputtered from a TaC target, deposited by ALD or CVD using TaCl4 and TMA, or produced by methane treatment of deposited Ta. Al may be added to tune the threshold voltage.
Abstract:
Methods and apparatus for forming a dielectric layer for use as a gate dielectric are provided. A high-k layer is formed with first ALD process using a halogen-based precursor. The metal in the halogen-based precursor may be at least one of hafnium, zirconium, or titanium. The halogen in the halogen-based precursor may be at least one of fluorine, chlorine, or iodine. In some embodiments, the halogen-based metal precursor includes hafnium chloride. The remainder of the high-k layer is formed with second ALD process using a metal organic-based precursor. The metal in the metal organic-based precursor may be at least one of hafnium, zirconium, or titanium. The organic ligands in the metal organic-based precursor may be at least one of β-diketonate precursors, alkoxide precursors, amino precursors. In some embodiments, the metal organic-based precursor includes amino precursors.
Abstract:
Irradiation with ultraviolet (UV) light during atomic layer deposition (ALD) can be used to cleave unwanted bonds on the layer being formed (e.g., trapped precursor ligands or process-gas molecules). Alternatively, the UV irradiation can be used to excite the targeted bonds so they may be more easily cleaved by other means. The use of UV may enable the formation of low-defect-density films at lower deposition temperatures (e.g.,
Abstract:
Embodiments provided herein describe systems and methods for forming semiconductor devices. A semiconductor substrate is provided. A source region and a drain region are formed on the semiconductor substrate. A gate electrode is formed between the source region and the drain region. A contact is formed above at least one of the source region and the drain region. The contact includes an insulating layer formed above the semiconductor substrate, an interface layer formed above the insulating layer, and a metallic layer formed above the interface layer. The interface layer is operable as a barrier between a material of the insulating layer and a material of the metallic layer, reduces the electrical resistance between the material of the insulating layer and the material of the metallic layer, or a combination thereof.
Abstract:
Native oxide growth on germanium, silicon germanium, and InGaAs undesirably affects CET (capacitive equivalent thickness) and EOT (effective oxide thickness) of high-k and low-k metal-oxide layers formed on these semiconductors. Even if pre-existing native oxide is initially removed from the bare semiconductor surface, some metal oxide layers are oxygen-permeable in thicknesses below about 25 Å thick. Oxygen-containing species used in the metal-oxide deposition process may diffuse through these permeable layers, react with the underlying semiconductor, and re-grow the native oxide. To eliminate or mitigate this re-growth, the substrate is exposed to a gas or plasma reductant (e.g., containing hydrogen). The reductant diffuses through the permeable layers to react with the re-grown native oxide, detaching the oxygen and leaving the un-oxidized semiconductor. The reduction product(s) resulting from the reaction may then be removed from the substrate (e.g., driven off by heat).
Abstract:
A method includes forming an interlayer on a substrate, depositing a dielectric on the interlayer to form a dielectric stack, forming a sacrificial cap layer over the dielectric stack, processing the substrate to alter properties of the dielectric stack, and removing the sacrificial cap layer.
Abstract:
Native oxide growth on germanium, silicon germanium, and InGaAs undesirably affects CET (capacitive equivalent thickness) and EOT (effective oxide thickness) of high-k and low-k metal-oxide layers formed on these semiconductors. Even if pre-existing native oxide is initially removed from the bare semiconductor surface, some metal oxide layers are oxygen-permeable in thicknesses below about 25 Å thick. Oxygen-containing species used in the metal-oxide deposition process may diffuse through these permeable layers, react with the underlying semiconductor, and re-grow the native oxide. To eliminate or mitigate this re-growth, the substrate is exposed to a gas or plasma reductant (e.g., containing hydrogen). The reductant diffuses through the permeable layers to react with the re-grown native oxide, detaching the oxygen and leaving the un-oxidized semiconductor. The reduction product(s) resulting from the reaction may then be removed from the substrate (e.g., driven off by heat).