Oxide removal by remote plasma treatment with fluorine and oxygen radicals
    1.
    发明授权
    Oxide removal by remote plasma treatment with fluorine and oxygen radicals 有权
    用氟和氧自由基通过远程等离子体处理除去氧化物

    公开(公告)号:US08945414B1

    公开(公告)日:2015-02-03

    申请号:US14079442

    申请日:2013-11-13

    Abstract: Oxides (e.g., native or thermal silicon oxide) are etched from underlying silicon with a mixture of fluorine and oxygen radicals generated by a remote plasma. The oxygen radicals rapidly oxidize any uncovered bare silicon areas, preventing the pitting that can result from fluorine etching bare silicon more rapidly than it etches the surrounding oxide. A very thin (few Å), highly uniform passivation layer remaining on the silicon after the process may be left in place or removed. An oxygen-impermeable layer may be formed in-situ immediately afterward to prevent further oxidation. A pre-treatment with oxygen radicals alone fills pores and gaps in the oxide before etching begins.

    Abstract translation: 通过由远程等离子体产生的氟和氧自由基的混合物从下面的硅蚀刻氧化物(例如天然或热氧化硅)。 氧自由基快速氧化任何未覆盖的裸硅区域,防止氟蚀刻裸硅的点蚀比其蚀刻周围氧化物更快。 在该过程之后残留在硅上的非常薄(几埃)的高度均匀的钝化层可能留在原位或去除。 可以立即就地形成不透氧层,以防止进一步的氧化。 单独的氧自由基的预处理在蚀刻开始之前填充氧化物中的孔隙和间隙。

    Combining Materials in Different Components of Selector Elements of Integrated Circuits
    2.
    发明申请
    Combining Materials in Different Components of Selector Elements of Integrated Circuits 审中-公开
    将材料组合在集成电路选择元件的不同组件中

    公开(公告)号:US20170062522A1

    公开(公告)日:2017-03-02

    申请号:US15235992

    申请日:2016-08-12

    Abstract: Provided are selector elements having snapback characteristics and non-volatile memory cells comprising such selector elements. To achieve its snapback characteristic, a selector element may include a dielectric layer comprising an alloy of two or more materials. In the same or other embodiments, the selector element may include a doped electrode, such carbon electrodes doped with silicon, germanium, and/or selenium. Concentrations of different materials forming an alloy may vary throughout the thickness of the dielectric layer. For example, the concentration of the first one alloy material may be higher in the center of the dielectric layer than near the interfaces of the dielectric layer with the electrodes. Some examples of this alloy material include germanium, indium, and aluminum. Examples of other materials in the same alloy include silicon, gallium, arsenic, and antimony. In some embodiments, the alloy is formed by three or more elements, such as indium gallium arsenic.

    Abstract translation: 提供具有快速恢复特性的选择器元件和包括这种选择器元件的非易失性存储单元。 为了实现其回跳特性,选择器元件可以包括包含两种或更多种材料的合金的电介质层。 在相同或其它实施例中,选择器元件可以包括掺杂电极,掺杂有硅,锗和/或硒的碳电极。 形成合金的不同材料的浓度可以在电介质层的整个厚度上变化。 例如,第一种合金材料的浓度在电介质层的中心处可以比在具有电极的介电层的界面附近更高。 该合金材料的一些实例包括锗,铟和铝。 相同合金中的其它材料的实例包括硅,镓,砷和锑。 在一些实施例中,合金由三种或更多种元素形成,例如铟镓砷。

    Reduction of native oxides by annealing in reducing gas or plasma
    4.
    发明申请
    Reduction of native oxides by annealing in reducing gas or plasma 有权
    还原气体或等离子体中还原天然氧化物

    公开(公告)号:US20150118828A1

    公开(公告)日:2015-04-30

    申请号:US14068906

    申请日:2013-10-31

    Abstract: Native oxide growth on germanium, silicon germanium, and InGaAs undesirably affects CET (capacitive equivalent thickness) and EOT (effective oxide thickness) of high-k and low-k metal-oxide layers formed on these semiconductors. Even if pre-existing native oxide is initially removed from the bare semiconductor surface, some metal oxide layers are oxygen-permeable in thicknesses below about 25 Å thick. Oxygen-containing species used in the metal-oxide deposition process may diffuse through these permeable layers, react with the underlying semiconductor, and re-grow the native oxide. To eliminate or mitigate this re-growth, the substrate is exposed to a gas or plasma reductant (e.g., containing hydrogen). The reductant diffuses through the permeable layers to react with the re-grown native oxide, detaching the oxygen and leaving the un-oxidized semiconductor. The reduction product(s) resulting from the reaction may then be removed from the substrate (e.g., driven off by heat).

    Abstract translation: 在锗,硅锗和InGaAs上的天然氧化物生长不利地影响在这些半导体上形成的高k和低k金属氧化物层的CET(电容等效厚度)和EOT(有效氧化物厚度)。 即使预先存在的原生氧化物最初从裸露的半导体表面去除,一些金属氧化物层的厚度可以在大约25埃的厚度下透氧。 在金属氧化物沉积工艺中使用的含氧物质可以扩散通过这些可渗透层,与下面的半导体反应,并重新生长天然氧化物。 为了消除或减轻这种再生长,将基底暴露于气体或等离子体还原剂(例如含有氢气)中。 还原剂通过可渗透层扩散以与再生的天然氧化物反应,分离氧并留下未氧化的半导体。 然后可以从反应物中除去由反应产生的还原产物(例如,通过加热驱除)。

    Metal-insulator-semiconductor (MIS) contact with controlled defect density
    6.
    发明申请
    Metal-insulator-semiconductor (MIS) contact with controlled defect density 审中-公开
    金属 - 绝缘体 - 半导体(MIS)接触具有受控的缺陷密度

    公开(公告)号:US20150380309A1

    公开(公告)日:2015-12-31

    申请号:US14315718

    申请日:2014-06-26

    Abstract: Metal-insulator-semiconductor (MIS) contacts for germanium and its alloys include insulator layers of oxygen-deficient metal oxide deposited by atomic layer deposition (ALD). The oxygen deficiency reduces the tunnel barrier resistance of the insulator layer while maintaining the layer's ability to prevent Fermi-level pinning at the metal/semiconductor interface. The oxygen deficiency is controlled by optimizing one or more ALD parameters such as shortened oxidant pulses, use of less-reactive oxidants such as water, heating the substrate during deposition, TMA “cleaning” of native oxide before deposition, and annealing after deposition. Secondary factors include reduced process-chamber pressure, cooled oxidant, and shortened pulses of the metal precursor.

    Abstract translation: 用于锗及其合金的金属 - 绝缘体 - 半导体(MIS)触点包括通过原子层沉积(ALD)沉积的缺氧金属氧化物的绝缘体层。 缺氧会降低绝缘体层的隧道势垒阻力,同时保持层在金属/半导体界面处防止费米能级钉扎的能力。 通过优化一个或多个ALD参数,例如缩短的氧化剂脉冲,使用较少反应性的氧化剂例如水,在沉积期间加热衬底,在沉积之前对自然氧化物进行TMA“清洁”,以及沉积后的退火来优化一个或多个ALD参数来控制氧缺乏。 次要因素包括降低的处理室压力,冷却的氧化剂和金属前体的缩短的脉冲。

Patent Agency Ranking