Abstract:
A method for forming doping regions is disclosed, including providing a substrate, forming a first-type doping material on the substrate and forming a second-type doping material on the substrate, wherein the first-type doping material is separated from the second-type doping material by a gap; forming a covering layer to cover the substrate, the first-type doping material and the second-type doping material; and performing a thermal diffusion process to diffuse the first-type doping material and the second-type doping material into the substrate.
Abstract:
An etching composition for a semiconductor wafer is provided, including 0.5-50 wt % base, 10-80 wt % alcohol, 0.01-15 wt % additive and water. A method for etching a semiconductor wafer is also provided. When the etching composition is applied to the entire surface or a partial surface of the semiconductor wafer at 60-200° C., the etching composition reacts on the semiconductor wafer to form a foam that etches the semiconductor wafer and includes a solid, a liquid and a gas. At the same time, the additive forms an oxide mask on the surface of the semiconductor wafer. Therefore, an excellent texture structure is formed on the surface of the semiconductor wafer, and a single surface of the semiconductor wafer is etched.
Abstract:
An image sensor and a manufacturing method thereof are provided. The image sensor includes a substrate, a patterned electrode layer, a pixel isolation structure and a patterned photo-electric conversion layer. The patterned electrode layer is disposed on the substrate and includes a plurality of electrode blocks separated from one another. The pixel isolation structure is disposed on the substrate and includes a metal halide. The patterned photo-electric conversion layer is disposed on the electrode blocks to form a plurality of photo-electric conversion blocks corresponding to the electrode blocks. The photo-electric conversion blocks include a perovskite material. The photo-electric conversion blocks are separated from one another by the pixel isolation structure.
Abstract:
A method for forming doping regions is disclosed, including providing a substrate, forming a first-type doping material on the substrate and forming a second-type doping material on the substrate, wherein the first-type doping material is separated from the second-type doping material by a gap; forming a covering layer to cover the substrate, the first-type doping material and the second-type doping material; and performing a thermal diffusion process to diffuse the first-type doping material and the second-type doping material into the substrate.
Abstract:
A passivation layer structure of a semiconductor device is provided, which includes a passivation layer formed of halogen-doped aluminum oxide and disposed on a semiconductor layer on a substrate, in which the semiconductor layer includes indium gallium zinc oxide (IGZO) or nitride-based III-V compounds. A method for forming the passivation layer structure of a semiconductor device is also disclosed.