摘要:
A method of forming a gate electrode of a semiconductor device according to example embodiments that may include forming a polysilicon film on a semiconductor substrate. An interface control layer may be formed on the polysilicon film by repeating a unit cycle a plurality of times. The unit cycle may include forming an interface metal film and nitriding an upper surface portion of the interface metal film to form an interface metal nitride film on an upper surface portion of the interface metal film. A wiring metal film may be formed on the interface control layer.
摘要:
A method of forming an integrated circuit device can include forming a plurality of stacked cell gates in a memory cell region of a semiconductor substrate and a plurality of high-voltage transistor gates in a peripheral circuit region of the semiconductor substrate. The semiconductor substrate including both the plurality of stacked cell gates and the plurality of high-voltage transistor gates is annealed and the annealed semiconductor substrate including both the plurality of stacked cell gates and the plurality of high-voltage transistor gates is plasma oxidized.
摘要:
Provided are semiconductor devices and methods of fabricating the same, and more specifically, semiconductor devices having a W—Ni alloy thin layer that has a low resistance, and methods of fabricating the same. The semiconductor devices include the W—Ni alloy thin layer. The weight of Ni in the W—Ni alloy thin layer may be in a range from approximately 0.01 to approximately 5.0 wt % of the total weight of the W—Ni alloy thin layer.
摘要:
A method of fabricating a semiconductor device can include forming a trench in a semiconductor substrate, forming a first conductive layer on a bottom surface and side surfaces of the trench, and selectively forming a second conductive layer on the first conductive layer to be buried in the trench. The second conductive layer may be formed selectively on the first conductive layer by using an electroless plating method or using a metal organic chemical vapor deposition (MOCVD) or an atomic layer deposition (ALD) method.
摘要:
Provided are semiconductor devices and methods of fabricating the same, and more specifically, semiconductor devices having a W—Ni alloy thin layer that has a low resistance, and methods of fabricating the same. The semiconductor devices include the W—Ni alloy thin layer. The weight of Ni in the W—Ni alloy thin layer may be in a range from approximately 0.01 to approximately 5.0 wt % of the total weight of the W—Ni alloy thin layer.
摘要:
A method of fabricating a semiconductor device can include forming a trench in a semiconductor substrate, forming a first conductive layer on a bottom surface and side surfaces of the trench, and selectively forming a second conductive layer on the first conductive layer to be buried in the trench. The second conductive layer may be formed selectively on the first conductive layer by using an electroless plating method or using a metal organic chemical vapor deposition (MOCVD) or an atomic layer deposition (ALD) method.
摘要:
An integrated circuit of a semiconductor device has a line type of pattern that is not prone to serious RC delays. The integrated circuit has a line formed of at least a layer of polycrystalline silicon, a layer of metal having a low sheet resistance, and a layer of a barrier metal interposed between the polycrystalline silicon and the metal having a low sheet resistance, and first spacers disposed on the sides of the line, respectively, and is characterized in that the line has recesses at the sides of the barrier layer and the first spacers fill the recesses. The integrated circuit may constitute a gate line of a semiconductor device. The integrated circuit is formed by forming layers of polycrystalline silicon, metal having a low sheet resistance, and a barrier metal one atop the other, patterning the layers into a line, etching the same to form the recesses, and then forming the first spacers. The etching is preferably a process of etching the barrier layer in situ using an etchant having an etch selectivity between the material of the barrier layer and the materials constituting the other layers of the line.
摘要:
An integrated circuit of a semiconductor device has a line type of pattern that is not prone to serious RC delays. The integrated circuit has a line formed of at least a layer of polycrystalline silicon, a layer of metal having a low sheet resistance, and a layer of a barrier metal interposed between the polycrystalline silicon and the metal having a low sheet resistance, and first spacers disposed on the sides of the line, respectively, and is characterized in that the line has recesses at the sides of the barrier layer and the first spacers fill the recesses. The integrated circuit may constitute a gate line of a semiconductor device. The integrated circuit is formed by forming layers of polycrystalline silicon, metal having a low sheet resistance, and a barrier metal one atop the other, patterning the layers into a line, etching the same to form the recesses, and then forming the first spacers. The etching is preferably a process of etching the barrier layer in situ using an etchant having an etch selectivity between the material of the barrier layer and the materials constituting the other layers of the line.