Abstract:
Described embodiments provide for de-coupling between adaptation of decision feedback equalizer (DFE) filter taps and transmitter (TX) post cursor filtering in group delay (GD)-based adaptation. Consequently, an excessive build-up of transmitter post cursor effects and its excessive equalization cancellation by the DFE may be substantially reduced or eliminated. By breaking this coupling, a transmitter does not over equalize a signal, the DFE does not attempt to “undo” the over equalization, and a variable gain amplifier (VGA) in the receiver front end data path generally does not apply gain to amplify the signal back again due to the reduced DC level. GD-based TX post cursor adaptation may reduce over equalization effect and hence save power and increase performance by not over equalizing the signal.
Abstract:
Described embodiments provide for, in a SerDes device, an adaptation process that adjusts termination impedance automatically to obtain a tuned termination. The termination adaptation is realized with a ‘biased’ bang-bang phase detector (BBPD) that biases the weights applied to UP and DOWN outputs of the phase detector. Through an optimization process, the system locks to data eye corners, and thereby is able to optimize termination though a predetermined criteria, such as signal to noise ratio (SNR), horizontal eye (H-) margin, vertical eye (V-) margin or joint SNR and H-/V-margin optimization. As part of the receiver equalization, adaptive termination tuning is performed after the SerDes receiver (RX) path is initially powered-up by tuning the termination above and below its current initial setting and performing the optimization process.
Abstract:
In described embodiments, data pattern-based detection of loss of signal (LOS) is employed for a receive path of serializer/deserializer (SerDes) devices. Pattern-based LOS detection allows for detection of data loss over variety of types of connection media, and is generally insensitive to signal attenuation. More specifically, some described embodiments disclose reliable pattern-based detection of LOS across different connection media for incoming receive data when discreet time decision feedback equalization (DFE) is employed.
Abstract:
In described embodiments, a VCO based CDR for a SerDes device includes a phase detector, a VCO responsive to a first control signal and a second control signal and generating an output signal, a frequency calibration module configured to calibrate the frequency of the output signal by performing a coarse calibration and a subsequent fine calibration, a gear shifting control module controlling a gain, change of the first and second control signals in time, and a look-up table created by fine calibration values generated from the frequency calibration module, wherein the programmed variable gain of the gear shifting control module is calculated by a calculation circuit employing the fine calibration values stored in the look-up table, the calculation of the calculation circuit adjusts gear shifting down, and adjusts a gear shifting gain, and adjusting an overall CDR gain over a VCO control curve.
Abstract:
Described embodiments provide for, in a receiver circuit employing a data latch, circuitry to adjust trim offset of the data latch to account for latch functional features (e.g., hysteresis and metastability) that may interact with trim of the latch. In accordance with the described embodiments, a trim procedure runs in a pre-selected directions of offset voltage ramp in order to average out the effect of hysteresis and metastability on the final trim offset choice. Different thresholds for accumulated slicer “0” and “1” discrimination of the circuitry to adjust trim offset allows for significant reduction in the number of trim runs, accelerating the slicers' trim process allowing for relatively quick determination of trim offset whenever the slicers are idle.
Abstract:
In described embodiments, data pattern-based detection of loss of signal (LOS) is employed for a receive path of serializer/deserializer (SerDes) devices. Pattern-based LOS detection allows for detection of data loss over variety of types of connection media, and is generally insensitive to signal attenuation. More specifically, some described embodiments disclose reliable pattern-based detection of LOS across different connection media for incoming receive data when discreet time decision feedback equalization (DFE) is employed.
Abstract:
An apparatus comprises a clock and data recovery system, and a loss of lock detector at least partially incorporated within or otherwise associated with the clock and data recovery system. The loss of lock detector is configured to generate a loss of lock signal responsive to phase adjustment requests generated for a clock signal in the clock and data recovery system. By way of example, the loss of lock signal may have a first logic level indicative of the phase adjustment requests occurring at a first rate associated with a lock condition and a second logic level indicative of the phase adjustment requests occurring at a second rate lower than the first rate. Absolute values of respective phase increments each associated with multiple up and down phase requests may be accumulated, and the loss of lock signal generated as a function of the accumulated phase increment absolute values.
Abstract:
An apparatus comprises a clock and data recovery system, and a loss of lock detector at least partially incorporated within or otherwise associated with the clock and data recovery system. The loss of lock detector is configured to generate a loss of lock signal responsive to phase adjustment requests generated for a clock signal in the clock and data recovery system. By way of example, the loss of lock signal may have a first logic level indicative of the phase adjustment requests occurring at a first rate associated with a lock condition and a second logic level indicative of the phase adjustment requests occurring at a second rate lower than the first rate. Absolute values of respective phase increments each associated with multiple up and down phase requests may be accumulated, and the loss of lock signal generated as a function of the accumulated phase increment absolute values.
Abstract:
Described embodiments provide for, in a receiver circuit employing a data latch, circuitry to adjust trim offset of the data latch to account for latch functional features (e.g., hysteresis and metastability) that may interact with trim of the latch. In accordance with the described embodiments, a trim procedure runs in a pre-selected directions of offset voltage ramp in order to average out the effect of hysteresis and metastability on the final trim offset choice. Different thresholds for accumulated slicer “0” and “1” discrimination of the circuitry to adjust trim offset allows for significant reduction in the number of trim runs, accelerating the slicers' trim process allowing for relatively quick determination of trim offset whenever the slicers are idle.
Abstract:
Described embodiments provide for, in a receiver circuit, an adaptation process that adjusts the IQ-skew automatically to obtain proper eye centering in a data eye, thereby maximizing horizontal margin of the eye. The IQ-skew adaptation algorithm is realized with a ‘biased’ bang-bang phase detector (BBPD) oof a clock and data recovery circuit (CDR) that biases the weights applied to UP and DOWN outputs of the phase detector, rather than treating them equally. By weighting the BBPD UPs and DOWNs differently, the system locks to the left and right inner corners, and thereby is able to locate the center of the inner eye.