Abstract:
In described embodiments, data pattern-based detection of loss of signal (LOS) is employed for a receive path of serializer/deserializer (SerDes) devices. Pattern-based LOS detection allows for detection of data loss over variety of types of connection media, and is generally insensitive to signal attenuation. More specifically, some described embodiments disclose reliable pattern-based detection of LOS across different connection media for incoming receive data when discreet time decision feedback equalization (DFE) is employed.
Abstract:
In described embodiments, a VCO based CDR for a SerDes device includes a phase detector, a VCO responsive to a first control signal and a second control signal and generating an output signal, a frequency calibration module configured to calibrate the frequency of the output signal by performing a coarse calibration and a subsequent fine calibration, a gear shifting control module controlling a gain, change of the first and second control signals in time, and a look-up table created by fine calibration values generated from the frequency calibration module, wherein the programmed variable gain of the gear shifting control module is calculated by a calculation circuit employing the fine calibration values stored in the look-up table, the calculation of the calculation circuit adjusts gear shifting down, and adjusts a gear shifting gain, and adjusting an overall CDR gain over a VCO control curve.
Abstract:
A tap coefficient control circuit and a method for controlling a tap coefficient for a decision feedback equalizer are disclosed. The method includes adjusting a correction voltage applied to the tap coefficient based on a first tap quantization and detecting a decision feedback equalizer tap convergence. After the decision feedback equalizer tap convergence is detected, the method adjusts the correction voltage applied to the tap coefficient based on a second tap quantization, wherein the second tap quantization is different from the first tap quantization.
Abstract:
An apparatus comprises a clock and data recovery system, and a loss of lock detector at least partially incorporated within or otherwise associated with the clock and data recovery system. The loss of lock detector is configured to generate a loss of lock signal responsive to phase adjustment requests generated for a clock signal in the clock and data recovery system. By way of example, the loss of lock signal may have a first logic level indicative of the phase adjustment requests occurring at a first rate associated with a lock condition and a second logic level indicative of the phase adjustment requests occurring at a second rate lower than the first rate. Absolute values of respective phase increments each associated with multiple up and down phase requests may be accumulated, and the loss of lock signal generated as a function of the accumulated phase increment absolute values.
Abstract:
Described embodiments provide for, in a receiver circuit employing a data latch, circuitry to adjust trim offset of the data latch to account for latch functional features (e.g., hysteresis and metastability) that may interact with trim of the latch. In accordance with the described embodiments, a trim procedure runs in a pre-selected directions of offset voltage ramp in order to average out the effect of hysteresis and metastability on the final trim offset choice. Different thresholds for accumulated slicer “0” and “1” discrimination of the circuitry to adjust trim offset allows for significant reduction in the number of trim runs, accelerating the slicers' trim process allowing for relatively quick determination of trim offset whenever the slicers are idle.
Abstract:
A SerDes data sampling controller that includes a gear shifting data sampling clock that zeroes the data sampling skew at the center of the unit interval during the CDR phase lock stage, and then skews the data sample timing away from the center of the unit interval as the DFE coefficients adapt during the data transfer stage. This allows the controller to implement the best (unskewed) data sample timing during the CDR phase locking stage, and then skew the data sample timing after the DFE coefficients have adapted to provide the best (skewed) data sample timing for data bit sampling during the data transfer stage. The data sampling gear shifter may apply a variable skew value to the transition sampling or quadrature (Q) data sampling clock differentially varying the quadrature (Q) transition sampling clock from the inphase (I) data sampling clock.
Abstract:
Embodiments of the present invention allow for adjustment of transmitter amplitude during joint transmitter (TX) and receiver (RX) equalization. During joint TX and RX adaptation, when the receiver requires a gain update, the receiver gain update is masked above or below a preset range. The RX gain update (instruction) is encoded into a transmitter amplitude update (instruction) transferred through back channel communication. The translation of RX gain to TX amplitude update is performed after the RX gain reaches a specified range. Such masking, encoding and translation reserves a certain amount RX gain range to account for RX gain variation due to process, voltage, and temperature (PVT) changes over time, and also to offer better linear equalization in the receiver over a constrained VGA bandwidth.
Abstract:
In described embodiments, a VCO based CDR for a SerDes device includes a phase detector, a VCO responsive to a first control signal and a second control signal and generating an output signal, a frequency calibration module configured to calibrate the frequency of the output signal by performing a coarse calibration and a subsequent fine calibration, a gear shifting control module controlling a gain change of the first and second control signals in time, and a look-up table created by fine calibration values generated from the frequency calibration module, wherein the programmed variable gain of the gear shifting control module is calculated by a calculation circuit employing the fine calibration values stored in the look-up table, the calculation of the calculation circuit adjusts gear shifting down, and adjusts a gear shifting gain, and adjusting an overall CDR gain over a VCO control curve.
Abstract:
A SerDes data sampling controller that includes a gear shifting data sampling clock that zeroes the data sampling skew at the center of the unit interval during the CDR phase lock stage, and then skews the data sample timing away from the center of the unit interval as the DFE coefficients adapt during the data transfer stage. This allows the controller to implement the best (unskewed) data sample timing during the CDR phase locking stage, and then skew the data sample timing after the DFE coefficients have adapted to provide the best (skewed) data sample timing for data bit sampling during the data transfer stage. The data sampling gear shifter may apply a variable skew value to the transition sampling or quadrature (Q) data sampling clock differentially varying the quadrature (Q) transition sampling clock from the inphase (I) data sampling clock.
Abstract:
Embodiments of the present invention allow for adjustment of transmitter amplitude during joint transmitter (TX) and receiver (RX) equalization. During joint TX and RX adaptation, when the receiver requires a gain update, the receiver gain update is masked above or below a preset range. The RX gain update (instruction) is encoded into a transmitter amplitude update (instruction) transferred through back channel communication. The translation of RX gain to TX amplitude update is performed after the RX gain reaches a specified range. Such masking, encoding and translation reserves a certain amount RX gain range to account for RX gain variation due to process, voltage, and temperature (PVT) changes over time, and also to offer better linear equalization in the receiver over a constrained VGA bandwidth.