Abstract:
A memory device has a divided reference line structure which supports sub-block erase in NAND memory including a plurality of blocks. Each block in the plurality of blocks is coupled to a set of Y reference lines, where Y is two or more. Each block in the plurality of blocks includes a single reference select line (RSL), which is operable to connect each sub-block in the block to a corresponding reference line in the set of Y reference lines. A control circuit can be included on the device which is configured for an erase operation to erase a selected sub-block in a selected block.
Abstract:
Common problems when programming 3D NAND Flash memory having alternating page orientation include the back-pattern effect and pattern-induced program disturb. Improved programming techniques may substantially reduce these problems and, in turn, increase precision when setting memory cells' threshold voltages. Provided are exemplary techniques that combine aspects of “by-word-line” programming and “by-page” programming. As such, each page may be programmed beginning with the memory cells that are closest to string select structures, and memory cells on multiple even or odd pages may be programmed substantially simultaneously.
Abstract:
A memory device comprises a first memory string and a second memory string. The first memory string is coupled to a first bit line and a plurality of word lines, and the second memory string is coupled to a second bit line and the word lines. When an erasing voltage is applied to the word lines, a first voltage is applied to the first bit line to erase data stored in the first memory string, and a second voltage is applied to the second bit line to set the second memory string to be floating.
Abstract:
A memory device is described that includes a three-dimensional array of memory cells having a plurality of levels of memory cells accessed by a plurality of word lines, and a plurality of bit lines. Control circuitry is coupled to the plurality of word lines and the plurality of bit lines. The control circuitry is adapted for programming a selected memory cell in a selected level of the array and on a selected word line, by hot carrier generation assisted FN tunneling, while inhibiting disturb in unselected memory cells in unselected levels and in the selected level and on unselected word lines by self-boosting.
Abstract:
A charge storage memory is configured in a NAND array, and includes NAND strings coupled to bit lines via string select switches and includes word lines. A controller is configured to produce a bias for performing an operation on a selected cell of the NAND array. The bias includes charging the bit line while the string select switches are closed, such as to not introduce noise into the strings caused by such bit line charging. The semiconductor body regions in memory cells that are on both sides of the memory cells in the NAND strings that are coupled to a selected word line are coupled to reference voltages such that they are pre-charged while the word lines of the strings in the array are transitioned to various voltages during the operation.
Abstract:
A reading method for preventing a read disturbance and a memory using the same are provided. The reading method includes the following steps: At least one of a plurality of string select lines is selected and a predetermined string select voltage is applied to the selected string select line. Only one of a plurality of ground select lines is selected and a predetermined ground select voltage is applied to the selected ground select line.
Abstract:
A NAND array includes blocks of memory cells. A block of memory cells includes a plurality of strings having channel lines between first and second string select switches. The strings share a set of word lines between the first and second string select switches. A channel-side voltage can be applied to the channel lines. A control voltage can be applied to a selected subset of the first string select switches. The channel lines can be floated at ends of the second string select switches. Tunneling in memory cells coupled to an unselected subset of the first string select switches can be inhibited. Word line-side erase voltages can be applied to word lines in the set of word lines in the block to induce tunneling in memory cells coupled to the word lines and coupled to the selected subset of the first string select switches.
Abstract:
A memory device comprises a first memory string and a second memory string. The first memory string is coupled to a first bit line and a plurality of word lines, and the second memory string is coupled to a second bit line and the word lines. When an erasing voltage is applied to the word lines, a first voltage is applied to the first bit line to erase data stored in the first memory string, and a second voltage is applied to the second bit line to set the second memory string to be floating.
Abstract:
A pre-reading method and a programming method for a 3D NAND flash memory are provided. The pre-reading method comprises the following steps. A selected string includes a first memory cell, two second memory cells and a plurality of third memory cells. The two second memory cells are adjacent to the first memory cell. The third memory cells are not adjacent to the first memory cell. A first pass voltage is applied on the second memory cells, a second pass voltage is applied on the third memory cells, and a read voltage is applied on the first memory cell via a plurality of word lines for reading a data of the first memory cell. The first pass voltage is larger than the second pass voltage.
Abstract:
Disclosed herein is a method of forming a semiconductor structure. The method includes the steps of: forming a first dielectric layer having a first through hole on a precursor substrate, in which the first through hole passes through the first dielectric layer; filling a sacrificial material in the first through hole; forming a second dielectric layer having a second through hole over the first dielectric layer, in which the second through hole exposes the sacrificial material in the first through hole, and the second through hole has a bottom width less than a top width of the first through hole; removing the sacrificial material after forming the second dielectric layer having the second through hole; forming a barrier layer lining sidewalls of the first and second through holes; and forming a conductive material in the first and second through holes.