摘要:
Compositions and devices for harvesting electrical energy from mechanical and thermal energy, storing such produced energy, and sensing strain based on low cost materials and processes. In embodiments, the compositions are flexible and include a flexible polymer embedded and coated with a nanostructured piezoelectric material.
摘要:
Compositions and devices for harvesting electrical energy from mechanical and thermal energy, storing such produced energy, and sensing strain based on low cost materials and processes. In embodiments, the compositions are flexible and include a flexible polymer embedded and coated with a nanostructured piezoelectric material.
摘要:
Embodiments of the invention relate to energy storage devices, e.g., capacitors and batteries, that may include a composite article of elongated conductive structures embedded in a polymer matrix. In some embodiments, a liquid containing ionic species may be dispersed within the polymer matrix of the article. The liquid may contact the elongated conductive structures within the polymer matrix. When the composite article is used as an energy storage device, the large surface area at the interface between the elongated conductive structures and the liquid can provide high energy storage. Embodiments of the invention enable storing energy using a composite article that exhibits both high and low temperature stability, high cyclic repeatability, and mechanical flexibility. The composite article can also be non-toxic, biocompatible and environmentally friendly. Thus, the composite article may be useful for a variety of energy storage applications, such as in the automotive, RFID, MEMS and medical fields.
摘要:
Metal/metal oxide nanoparticle-embedded polymer films were synthesized in situ wherein the polymerizing agent was utilized for both reduction and polymerization (such as curing). This in situ method avoids the use of any external reducing agent/stabilizing agent and leads to a uniform distribution of nanoparticles in the polymer matrix. In some embodiments, additional heating can be utilized to form the nanoparticles embedded in the polymer film.
摘要:
An additive manufacturing system includes a platen having a top surface to support an object being manufactured, a dispenser to deliver a plurality of successive layers of feed material over the platen, an energy source positioned above the platen to direct a beam to fuse at least some of an outermost layer of feed material, and a plurality of lamps disposed above the platen and around the energy source to radiatively heat the outermost layer of feed material.
摘要:
An apparatus for surface modification includes a support to hold a workpiece, a plasma source to generate a plasma in a localized region that is smaller than the workpiece, and a six-axis robot to manipulate relative positioning of the workpiece and the plasma source. The six-axis robot is coupled to at least one of the support and the plasma source.
摘要:
A solid electrolyte is formed by blending a coating chemical with metal ions and fatty acid. Filling molds and drying the material in the molds forms the solid electrolyte. The solid electrolyte is mounted on an electrode and attached to a handle. The solid electrolyte is moved over a surface of a substrate with the handle. DC current is passed between the electrode and substrate and ions are transferred to the wetted substrate from the solid electrolyte.
摘要:
A method of additive manufacturing include delivering at least one layer by either depositing a uniform layer of powder on a support and then removing a portion of the layer with a roller with a surface having spatially controlled electrostatic charge, or by depositing powder onto the surface of the roller and moving the roller relative to a support such that the spatially controllable electrostatic charge on the surface of the roller causes transfer of a corresponding portion of the powder from the roller onto the support or an underlying layer.
摘要:
The present invention relates to a method for the hydrophobisation of DNA molecules comprising mixing an aqueous solution of the DNA molecule with a solution of a cationic lipid or a surfactant in an organic solvent under agitation for a period in the range of 30 to 60 minutes to obtain the hydrophobic DNA in organic phase.
摘要:
Additive manufacturing includes successively forming a plurality of layers on a support. Depositing a layer from the plurality of layers includes dispensing first particles, selectively dispensing second particles in selected regions corresponding to a surface of the object, and fusing at least a portion of the layer. The layer has the first particles throughout and the second particles in the selected regions. Alternatively or in addition, forming the plurality of layers includes depositing multiple groups of layers. Depositing a group of layers includes, for each layer in the group of layers dispensing a feed material to provide the layer, and after dispensing the feed material and before dispensing a subsequent layer fusing a selected portion of the layer. After all layers in the group of layers are dispensed, a volume of the group of layers that extends through all the layers in the group of layers is fused.