摘要:
The present device relates to a driving dynamics control system for vehicles, including at least one signal distribution to which vehicle data, environment data and data regarding the driver's request are sent in the form of input data, and including several controllable or regulatable subsystems which modify the dynamics of the vehicle such as a driver-independently adjustable steering system, a driver-independently adjustable chassis, a driver-independently adjustable brake, and a driver-independently adjustable driving track. The system is characterized in that the data of the signal distribution is sent to a central determining unit (driving condition detection, driver request detection), in that the central determining unit determines from the data of the signal distribution a central control target, and these items of data regarding the central control target are sent to a central regulating variable distribution or a central driving condition controller, respectively, which, in an interactive communication with the subsystems, actuates these subsystems in such a way that the control target is realized by the subsystems on the vehicle.
摘要:
A method for controlling the driving dynamics of a vehicle provides that a steering movement is carried out on the basis of a set value, which is calculated as a function of a deviation between a desired value and an acquired actual value of a vehicle state variable.In this method, at least one membership degree of an acquired value of a steering angle, which is set by a driver, and/or of a steering angle gradient, which is set by the driver, in a predetermined fuzzy set, are/is determined, and a value of the set value is changed as a function of the membership degree.
摘要:
The invention relates to a method for controlling the driving dynamics of a vehicle, in which a steering movement is carried out on the basis of a set value, which is calculated as a function of a deviation between a desired value and an acquired actual value of a vehicle state variable. The method is characterized in that at least one membership degree of an acquired value of a steering angle, which is set by a driver, and/or of a steering angle gradient, which is set by the driver, in a predetermined fuzzy set, are/is determined, and a value of the set value is changed as a function of the membership degree.
摘要:
The present device relates to a driving dynamics control system for vehicles, including at least one signal distribution to which vehicle data, environment data and data regarding the driver's request are sent in the form of input data, and including several controllable or regulatable subsystems which modify the dynamics of the vehicle such as a driver-independently adjustable steering system, a driver-independently adjustable chassis, a driver-independently adjustable brake, and a driver-independently adjustable driving track. The system is characterized in that the data of the signal distribution is sent to a central determining unit (driving condition detection, driver request detection), in that the central determining unit determines from the data of the signal distribution a central control target, and these items of data regarding the central control target are sent to a central regulating variable distribution or a central driving condition controller, respectively, which, in an interactive communication with the subsystems, actuates these subsystems in such a way that the control target is realized by the subsystems on the vehicle.
摘要:
In a method for increasing the driving stability of a vehicle during braking, compensation steering angles for a regulated and/or controlled steering system are calculated from several input parameters, so that the driving stability of the vehicle is increased by steering interventions. During the steering interventions at least two interference compensation portions for the compensation steering angles are taken into consideration in order to obtain a more comfortable control, from which an interference compensation portion is calculated on the basis of the vehicle course.
摘要:
A method for calculation of the lateral force in a motor vehicle with an electromechanical or electrohydraulic steering system is disclosed. The method comprises the following steps: firstly a steering column force is recorded, from which a total restoring torque is calculated. The total restoring torque comprises restoring torques generated by differing forces acting on the wheels. Said restoring torques include a restoring torque generated by lateral force and other restoring torques. The other restoring torques are quantitatively determined on the basis of measured values and subtracted from the total restoring torque, in order to determine the restoring torque generated by lateral force. Finally the lateral force is determined from the restoring torque generated by the lateral force.
摘要:
Disclosed is a method of controlling the driving dynamics of a vehicle, in which a nominal value ({dot over (ψ)}ref) of a driving state variable that corresponds to a preset driver input is compared with a detected actual value ({dot over (ψ)}) of the driving state variable, and in which a rolling moment distribution is detected and modified. The method is implemented in such a manner that the driving performance of the vehicle is determined by comparing the nominal value ({dot over (ψ)}ref) of the driving state variable with the actual value ({dot over (ψ)}) of the driving state variable. Also, depending on the determined driving performance, a new rolling moment distribution is determined which corresponds to a predefined driving performance and the new rolling moment distribution is adjusted.
摘要:
The present invention discloses an electromechanically operable disc brake for automotive vehicles which comprises a floating caliper as well as an actuating unit arranged on the caliper. The actuating unit includes an electric motor which, by the intermediary of a reduction gear, readjusts an actuating element which is used to move one of two friction linings that are slidable in the brake caliper into engagement with a brake disc. To permit an individual adjustment of the desired brake force, especially for use of the disc brake in an automotive vehicle, according to the present invention, a force-measuring device (23) is interposed in the flux of force between the caliper (1) and the actuating unit (2), and the output signals of device (23) are adapted to be sent to a control circuit (26) that influences the current supplied to the electric motor (6), and/or the voltage.
摘要:
The invention relates to an axle drive device for an axle of a motor vehicle, with a drive assembly and a differential. Here, it is provided that the drive assembly is in the form of an electrical drive assembly and the differential has at least one override unit. The invention furthermore relates to a motor vehicle.
摘要:
The invention relates to a propulsion system for all-wheel drive motor vehicles, having a device for propulsion distribution to the front and the rear differential which transmit the drive output to the wheels assigned at the time, and with a device for coupled, variable distribution of the propulsion forces in the transverse and longitudinal directions of the vehicle depending on the operating situation of the vehicle for influencing the driving behavior, especially for improving the driving agility and driving stability. In the process the rear differential (18) is combined with an overriding drive (22), by means of which the drive torques can be shifted to the rear wheels (20) in alternation in the transverse direction of the vehicle, the rpm ratio or rpm error being dictated by means of the overriding drive (22) at the design point so that at a given curve radius which is assigned to the design point and which does not correspond to the narrowest curve, a reversal of the direction of the rotational speed difference takes place and thus the torque is not shifted to the wheel on the outside of the curve. By means of the propulsion distribution device (24, 26; 44, 46; 52) the drive torques can be shifted in alternation between the front differential (14) and rear differential (18) in the longitudinal direction of the vehicle.