Abstract:
A semiconductor device can be reduced in size. The semiconductor device has a first conductivity type p type well layer extending in the X direction of the main surface of a semiconductor substrate; a reference potential wire coupled with the p type well layer, and extending in the X direction; first and second active regions arranged on the opposite sides of the reference potential wire in the Y direction; and a gate electrode layer extending in the Y direction in such a manner as to cross with the first and second active regions . Then, the gate electrode layer has a first gate electrode of a second conductivity type at the crossing part with the first active region, a second gate electrode of the second conductivity type at the crossing part with the second active region, and a non-doped electrode between the first gate electrode and the second gate electrode.
Abstract:
A semiconductor device in which wirings are formed adequately and electrical couplings are made properly in an SRAM memory cell. In the SRAM memory cell of the semiconductor device, a via to be electrically coupled to a third wiring as a word line is directly coupled to a contact plug electrically coupled to the gate wiring part of an access transistor. Also, another via to be electrically coupled to the third wiring as the word line is directly coupled to a contact plug electrically coupled to the gate wiring part of another access transistor.
Abstract:
Reliability of a semiconductor device is improved. A p-type MISFET of a thin film SOI type is formed in an SOI substrate including a semiconductor substrate, an insulating layer on the semiconductor substrate, and a semiconductor layer on the insulating layer, and n+-type semiconductor regions which are source and drain region of the p-type MISFET are formed in the semiconductor layer and an epitaxial layer on the semiconductor layer. A semiconductor layer is formed via the insulating layer below the p-type MISFET formed in the n-type well region of the semiconductor substrate. In an n-type tap region which is a power supply region of the n-type well region, a silicide layer is formed on a main surface of the n-type well region without interposing the epitaxial layer therebetween.
Abstract:
Characteristics of a semiconductor device are improved. The semiconductor device is configured to include an SOI substrate including an active region and an element isolation region (element isolation insulating film), a gate electrode formed in the active region via a gate insulating film, and a dummy gate electrode formed in the element isolation region. A dummy sidewall film is formed on both sides of the dummy gate electrode, and is arranged to match or overlap a boundary between the active region and the element isolation region (element isolation insulating film). According to such a configuration, a plug can be prevented from deeply reaching, for example, an insulating layer and a support substrate even when a contact hole is formed to be shifted.
Abstract:
A semiconductor device includes an SOI substrate having an active region and an element isolation region adjacent to the active region, and including a support substrate, an insulating layer formed on the support substrate, and a semiconductor layer formed on the insulating layer, a trench formed in the element isolation region, and penetrating the semiconductor layer and the insulating layer so as to reach the support substrate, an element isolation insulating film embedded in the trench, the element isolation insulating film being made of silicon oxide film, a gate electrode formed on the semiconductor layer in the active region via a gate insulating film, a sidewall film formed on both sides of the gate electrode in cross-section view, the sidewall film being comprised of a first film made of silicon oxide film, and a second film made of silicon nitride film.
Abstract:
There is provided with the following semiconductor device to improve its reliability. In a SOI substrate including a semiconductor substrate, an insulating layer, and a semiconductor layer, a diffusion region is formed in the semiconductor layer and a plug electrically connected to the diffusion region is formed on the diffusion region. An element isolation portion is formed within the semiconductor substrate and a trench is formed in the element isolation portion. The lowest part of the bottom of the trench is lower than the surface of the semiconductor substrate and a sidewall spacer is formed in the side portion of the trench to cover the side surface of the insulating layer. As the result, even when the plug is formed in a deviated position, a disadvantage of conducting the semiconductor layer with the semiconductor substrate can be suppressed.
Abstract:
A semiconductor device can be reduced in size. The semiconductor device has a first conductivity type p type well layer extending in the X direction of the main surface of a semiconductor substrate; a reference potential wire coupled with the p type well layer, and extending in the X direction; first and second active regions arranged on the opposite sides of the reference potential wire in the Y direction; and a gate electrode layer extending in the Y direction in such a manner as to cross with the first and second active regions. Then, the gate electrode layer has a first gate electrode of a second conductivity type at the crossing part with the first active region, a second gate electrode of the second conductivity type at the crossing part with the second active region, and a non-doped electrode between the first gate electrode and the second gate electrode.
Abstract:
A solid-state imaging device includes pixels respectively having photoelectric conversion units and arranged in matrix in basic pattern units, and an optical member arranged on the incidence side of incident light than the pixels and having constituent elements respectively corresponding to the pixels. The pixels include first, second and third wavelength range light pixels. Each basic pattern is comprised of a combined arrangement pattern of the wavelength range light pixels. Misregistration constituent elements with the occurrence of misregistration exist in the constituent elements. The misregistration increases toward the misregistration constituent elements separated from a center position of a pixel array of the pixels. The misregistration of the misregistration constituent element for the first wavelength range light pixel and that of the misregistration constituent element for the third wavelength range light pixel are smaller and larger than that of the misregistration constituent element for the second wavelength range light pixel, respectively.
Abstract:
A solid-state imaging device includes pixels respectively having photoelectric conversion units and arranged in matrix in basic pattern units, and an optical member arranged on the incidence side of incident light than the pixels and having constituent elements respectively corresponding to the pixels. The pixels include first, second and third wavelength range light pixels. Each basic pattern is comprised of a combined arrangement pattern of the wavelength range light pixels. Misregistration constituent elements with the occurrence of misregistration exist in the constituent elements. The misregistration increases toward the misregistration constituent elements separated from a center position of a pixel array of the pixels. The misregistration of the misregistration constituent element for the first wavelength range light pixel and that of the misregistration constituent element for the third wavelength range light pixel are smaller and larger than that of the misregistration constituent element for the second wavelength range light pixel, respectively.