Abstract:
There is provided an embedded multilayer ceramic electronic component including a ceramic body including dielectric layers, having first and second main surfaces, first and second side surfaces, and first and second end surfaces, and having a thickness of 250 μm or less, first and second internal electrodes alternately exposed to the first or second side surface, and first and second external electrodes formed on the first and second side surfaces, wherein the first external electrode includes a first electrode layer and a first metal layer, the second external electrode includes a second electrode layer and a second metal layer, the first and second external electrodes are extended onto the first and second main surfaces, and widths of the first and second external electrodes formed on the first and second main surfaces are different from each other.
Abstract:
A multilayer ceramic electronic component includes: a main body; and a first external electrode disposed on a first surface of the main body and a second external electrode disposed on a second surface of the main body. The first external electrodes include a first base electrode forming an edge portion of the first surface of the main body and a first terminal electrode disposed on a portion of the first base electrode. The second external electrodes include a second base electrode forming an edge portion of the second surface of the main body and a second terminal electrode disposed on a portion of the second base electrode.
Abstract:
There are provided a multilayer ceramic capacitor and a circuit board having the same. The multilayer ceramic capacitor may include: first and second internal electrodes connected to first and second external electrodes, respectively, and disposed to face each other; and third and fourth internal electrodes connected to the first and second external electrodes, respectively, and disposed to face each other, a connection area of the third and fourth internal electrodes with the first and second external electrodes being different from that of the first and second internal electrodes with the first and second external electrodes, and the first and second external electrodes including first and second conductive layers disposed in inner portions thereof and first and second conductive resin layers disposed in outer portions thereof, respectively.
Abstract:
A multilayer ceramic electronic component includes a ceramic body including dielectric layers and first and second internal electrodes alternately stacked with each of the dielectric layers interposed therebetween. First and second external electrodes are disposed on outer surfaces of the ceramic body, connected to the first and second internal electrodes respectively, and disposed to cover at least five of eight corners of the ceramic body. The first and second external electrodes include, respectively, first and second base electrode layers at least partially in contact with the outer surfaces of the ceramic body and first and second plating layers disposed to cover the first and second base electrode layers, respectively. The first and second plating or base electrode layers have one or more to three or less holes positioned adjacent to one or more to three or less of the eight corners of the ceramic body.
Abstract:
A multilayer ceramic electronic component to be embedded in a board may include: a ceramic body in which a plurality of dielectric layers are stacked; a plurality of first and second internal electrodes alternately exposed through both end surfaces of the ceramic body, respectively, with at least one of the dielectric layers interposed therebetween; and first and second external electrodes disposed on the end surfaces of the ceramic body and electrically connected to the first and second internal electrodes, respectively. Each of the first and second external electrodes includes a first external electrode layer containing a glass component and disposed on the end surface of the ceramic body and a second external electrode layer being glass-free and covering the first external electrode layer.
Abstract:
There is provided a multilayer ceramic electronic component embedded in a board including: a ceramic body including dielectric layers; first and second internal electrodes; and first and second external electrodes formed on first and second side surfaces of the ceramic body, respectively, wherein the first external electrode includes a first electrode layer and a first metal layer formed on the first electrode layer, the second external electrode includes a second electrode layer and a second metal layer formed on the second electrode layer, the first and second external electrodes are formed to be extended to first main surface of the ceramic body, and when a maximum width and a minimum width of at least one of the first and second external electrodes formed on the first main surface are defined as BWmax and BWmin, respectively, 0≦BWmax−BWmin≦100 μm is satisfied.
Abstract:
There is provided an embedded multilayer ceramic electronic component including: a ceramic body including a dielectric layer; a plurality of first and second internal electrodes; and first and second external electrodes formed on both end portions of the ceramic body, wherein the first and second external electrodes are extended to first and second main surfaces of the ceramic body, and when a thickness of the ceramic body is defined as ts, a maximum thickness of the first and second external electrodes formed on the first and second main surfaces of the ceramic body is defined as tb, a minimum distance of the first and second external electrodes formed on first and second end surfaces of the ceramic body in a length direction of the ceramic body is defined as ta, tb/ts and ta/tb satisfy the following Equations, respectively: 0.1≦tb/ts≦1.0 and 0.5≦ta/tb≦2.0.
Abstract:
There is provided a multilayer ceramic capacitor to be embedded in a board, including: a ceramic body; first and second internal electrodes alternately exposed through end surfaces of the ceramic body; first and second external electrodes formed on end surfaces of the ceramic body; and first and second plating layers enclosing the first and second external electrodes, wherein when distance from one end of bands of the first or second external electrode to the other end thereof is ‘A’ and distance between points at which a virtual line drawn from a point vertically spaced apart from a surface of the first or second plating layer at a point ½×A from one end of the bands inwardly of the ceramic body by 3 μm in length direction of the ceramic body intersects points on the surface of the first or second plating layer is ‘B,’ B/A≧0.6.
Abstract:
There is provided a multilayer ceramic electronic component, including: a ceramic body having dielectric layers and first and second internal electrodes alternately stacked therein; and first and second external electrodes electrically connected to the first and second internal electrodes and formed at both ends of the ceramic body, wherein the ceramic body includes an effective layer contributing to capacitance formation and a protective layer provided on at least one of upper and lower surfaces of the effective layer, the protective layer including one or more step absorbing layers provided at both ends thereof, so that the multilayer ceramic electronic component can have excellent reliability by reducing defects such as electrode spreading, cracks, delamination and the like.
Abstract:
A multilayer ceramic capacitor includes a body including a dielectric layer and an internal electrode, and an external electrode disposed on the body. The external electrode includes an electrode layer connected to the internal electrode, a first plating portion disposed on the electrode layer and having a thickness ranging from 0.3 μm to 1 μm, and a second plating portion disposed on the first plating portion.