Abstract:
A semiconductor light emitting device is provided including a first conductivity-type semiconductor layer, an active layer including at least one quantum barrier layer made of InxGa(1-x)N, wherein 0≦x
Abstract translation:提供了一种半导体发光器件,其包括第一导电型半导体层,包括由In x Ga(1-x)N制成的至少一个量子势垒层的有源层,其中0< 1E; x
Abstract:
A semiconductor light emitting device includes a substrate formed of a first material; and a convex portion protruding from the substrate and including: a first layer formed of the first material as that of the substrate; and a second layer formed of a second material different from the first material and disposed on the first layer. A second height of the second layer is greater than a first height of the first layer.
Abstract:
A semiconductor light emitting device includes an n-type semiconductor layer, a border layer disposed on the n-type semiconductor layer, having band gap energy decreasing in a single direction, and represented by an empirical formula AlxInyGa1−x−yN (0≦x≦0.1, 0.01≦y≦0.1), an active layer disposed on the border layer and having a structure in which one or more InGaN layers and one or more GaN layers are alternately stacked, and a p-type semiconductor layer.
Abstract:
A semiconductor light emitting device may include: a first conductivity-type semiconductor layer; an active layer disposed on the first conductivity-type semiconductor layer and including a plurality of quantum barrier layers and a plurality of quantum well layers which are alternately stacked; and a second conductivity-type semiconductor layer disposed on the active layer. A quantum barrier layer closest to the second conductivity-type semiconductor layer, among the plurality of quantum barrier layers, may include a first undoped region and a first doped region disposed on the first undoped region and having a thickness greater than or equal to that of the first undoped region. Each of the first undoped region and the first doped region may include a plurality of first unit layers having different energy band gaps, and at least one hole accumulation region.
Abstract:
A method of manufacturing a semiconductor light emitting device includes forming a light emitting structure layer including an active layer on a first substrate. A second substrate is bonded to the light emitting structure layer at a first temperature higher than room temperature. The first substrate is removed from the light emitting structure layer at a second temperature higher than room temperature. The second substrate and the light emitting structure are cooled to reach room temperature. A coefficient of thermal expansion of the second substrate is different from a coefficient of thermal expansion of the active layer.