Abstract:
A voltage generator includes a bias voltage generation circuit and a compensation circuit. The bias voltage generation circuit generates a first bias voltage based on a reference current and generates a second bias voltage based on the first bias voltage. The compensation circuit changes a voltage level of the first bias voltage based on the second bias voltage.
Abstract:
A calibration circuit of a semiconductor apparatus may include: a reference voltage generator suitable for generating first and second pull-up reference voltages based on a pull-up control signal, and generating first and second pull-down reference voltages based on a pull-down control signal; and a calibrator suitable for generating a pull-up resistor code corresponding to an external reference resistor based on the first and second pull-up reference voltages, and generating a pull-down resistor code corresponding to the external reference resistor based on the first and second pull-down reference voltages and the pull-up resistor code.
Abstract:
A semiconductor memory device includes a semiconductor circuit substrate having a chip pad forming region. A pair of data lines are formed on the semiconductor circuit substrate at one side of the chip pad region. The pair of data lines extend along a direction that the chip pad region of the semiconductor circuit substrate extends. The pair of data lines are arranged to be adjacent to each other and receive a pair of differential data signals. A power supply line is formed on the semiconductor circuit substrate at the other side of the chip pad region. The power supply line extends along the direction that the chip pad region of the semiconductor circuit substrate extends, and the power supply line receives power.
Abstract:
A receiver circuit includes a first amplification unit, a second amplification unit, a first equalizing unit, and a second equalizing unit. The first amplification unit is configured to differentially amplify an input signal and a reference signal and generate a first intermediate output signal and a second intermediate output signal. The second amplification unit is configured to differentially amplify the first and second intermediate output signals and generate an output signal. The first equalizing unit is configured to control the level of the second intermediate output signal in response to the output signal. And the second equalizing unit is configured to control the level of the first intermediate output signal in response to the output signal.
Abstract:
A buffer circuit configured to receive first and second input signals through first and second input transistors coupled to a first power voltage node, output a first output signal through a first output node and a second output signal through a second output node based on the first and second input signals. A load circuit is coupled among the first output node, the second output node, and a second power voltage node and a resistance value is adjusted based on at least one of the first and second output signals.
Abstract:
An amplifier may include a differential pair circuit configured to generate an output signal according to a first input signal and a second input signal, a plurality of current sinks coupled between a ground terminal and the differential pair circuit, and a feedback circuit configured to sense a level of the output signal and generate a feedback signal. At least one of the plurality of current sinks is controlled according to the feedback signal.
Abstract:
A semiconductor memory device includes a semiconductor circuit substrate having a chip pad forming region. A pair of data lines are formed on the semiconductor circuit substrate at one side of the chip pad region. The pair of data lines extend along a direction that the chip pad region of the semiconductor circuit substrate extends. The pair of data lines are arranged to be adjacent to each other and receive a pair of differential data signals. A power supply line is formed on the semiconductor circuit substrate at the other side of the chip pad region. The power supply line extends along the direction that the chip pad region of the semiconductor circuit substrate extends, and the power supply line receives power.
Abstract:
A buffer circuit includes an amplification unit suitable for sensing and amplifying an input signal and a reference voltage, a buffer enable unit suitable for enabling the amplification unit based on a buffer enable signal, and a buffer enable signal generation unit suitable for generating the buffer enable signal based on a first or second operation control signal, selected according to a high voltage detection signal.
Abstract:
A semiconductor memory device includes a semiconductor circuit substrate having a chip pad forming region. A pair of data lines are formed on the semiconductor circuit substrate at one side of the chip pad region. The pair of data lines extend along a direction that the chip pad region of the semiconductor circuit substrate extends. The pair of data lines are arranged to be adjacent to each other and receive a pair of differential data signals. A power supply line is formed on the semiconductor circuit substrate at the other side of the chip pad region. The power supply line extends along the direction that the chip pad region of the semiconductor circuit substrate extends, and the power supply line receives power.
Abstract:
A buffer circuit configured to receive first and second input signals through first and second input transistors coupled to a first power voltage node, output a first output signal through a first output node and a second output signal through a second output node based on the first and second input signals. A load circuit is coupled among the first output node, the second output node, and a second power voltage node and a resistance value is adjusted based on at least one of the first and second output signals.