Abstract:
An integrated magnetoresistive device includes a substrate of semiconductor material that is covered, on a first surface, by an insulating layer. A magnetoresistor of ferromagnetic material extends within the insulating layer and defines a sensitivity plane of the sensor. A concentrator of ferromagnetic material includes at least one arm that extends in a transversal direction to the sensitivity plane and is vertically offset from the magnetoresistor. The concentrator concentrates deflects magnetic flux lines perpendicular to the sensitivity plane so as to generate magnetic-field components directed in a parallel direction to the sensitivity plane.
Abstract:
A process for manufacturing an interaction system of a microelectromechanical type for a storage medium, the interaction system provided with a supporting element and an interaction element carried by the supporting element, envisages the steps of: providing a wafer of semiconductor material having a substrate with a first type of conductivity and a top surface; forming a first interaction region having a second type of conductivity, opposite to the first type of conductivity, in a surface portion of the substrate in the proximity of the top surface; and carrying out an electrochemical etch of the substrate starting from the top surface, the etching being selective with respect to the second type of conductivity, so as to remove the surface portion of the substrate and separate the first interaction region from the substrate, thus forming the supporting element.
Abstract:
An integrated magnetoresistive device includes a substrate of semiconductor material that is covered, on a first surface, by an insulating layer. A magnetoresistor of ferromagnetic material extends within the insulating layer and defines a sensitivity plane of the sensor. A concentrator of ferromagnetic material includes at least one arm that extends in a transversal direction to the sensitivity plane and is vertically offset from the magnetoresistor. The concentrator concentrates deflects magnetic flux lines perpendicular to the sensitivity plane so as to generate magnetic-field components directed in a parallel direction to the sensitivity plane.
Abstract:
An integrated magnetoresistive device includes a substrate of semiconductor material that is covered, on a first surface, by an insulating layer. A magnetoresistor of ferromagnetic material extends within the insulating layer and defines a sensitivity plane of the sensor. A concentrator of ferromagnetic material includes at least one arm that extends in a transversal direction to the sensitivity plane and is vertically offset from the magnetoresistor. The concentrator concentrates deflects magnetic flux lines perpendicular to the sensitivity plane so as to generate magnetic-field components directed in a parallel direction to the sensitivity plane.
Abstract:
An integrated magnetoresistive device includes a substrate of semiconductor material that is covered, on a first surface, by an insulating layer. A magnetoresistor of ferromagnetic material extends within the insulating layer and defines a sensitivity plane of the sensor. A concentrator of ferromagnetic material includes at least one arm that extends in a transversal direction to the sensitivity plane and is vertically offset from the magnetoresistor. The concentrator concentrates deflects magnetic flux lines perpendicular to the sensitivity plane so as to generate magnetic-field components directed in a parallel direction to the sensitivity plane.
Abstract:
A substrate-level assembly having a device substrate of semiconductor material with a top face and housing a first integrated device, including a buried cavity formed within the device substrate, and with a membrane suspended over the buried cavity in the proximity of the top face. A capping substrate is coupled to the device substrate above the top face so as to cover the first integrated device in such a manner that a first empty space is provided above the membrane. Electrical-contact elements electrically connect the integrated device with the outside of the substrate-level assembly. In one embodiment, the device substrate integrates at least a further integrated device provided with a respective membrane, and a further empty space, fluidly isolated from the first empty space, is provided over the respective membrane of the further integrated device.
Abstract:
A process for manufacturing an interaction system of a microelectromechanical type for a storage medium, the interaction system provided with a supporting element and an interaction element carried by the supporting element, envisages the steps of: providing a wafer of semiconductor material having a substrate with a first type of conductivity and a top surface; forming a first interaction region having a second type of conductivity, opposite to the first type of conductivity, in a surface portion of the substrate in the proximity of the top surface; and carrying out an electrochemical etch of the substrate starting from the top surface, the etching being selective with respect to the second type of conductivity, so as to remove the surface portion of the substrate and separate the first interaction region from the substrate, thus forming the supporting element.
Abstract:
An integrated magnetoresistive device includes a substrate of semiconductor material that is covered, on a first surface, by an insulating layer. A magnetoresistor of ferromagnetic material extends within the insulating layer and defines a sensitivity plane of the sensor. A concentrator of ferromagnetic material includes at least one arm that extends in a transversal direction to the sensitivity plane and is vertically offset from the magnetoresistor. The concentrator concentrates deflects magnetic flux lines perpendicular to the sensitivity plane so as to generate magnetic-field components directed in a parallel direction to the sensitivity plane.