Abstract:
High-density microfluidic chips contain plumbing networks with thousands of micromechanical valves and hundreds of individually addressable chambers. These fluidic devices are analogous to electronic integrated circuits fabricated using large scale integration (LSI). A component of these networks is the fluidic multiplexor, which is a combinatorial array of binary valve patterns that exponentially increases the processing power of a network by allowing complex fluid manipulations with a minimal number of inputs. These integrated microfluidic networks can be used to construct a variety of highly complex microfluidic devices, for example the microfluidic analog of a comparator array, and a microfluidic memory storage device resembling electronic random access memories.
Abstract:
A microelectromechanical device is comprised of a cantilevered beam positioned above, and free to move relative to, a substrate. The beam may carry a plurality of conductors which are insulated from one another. One or more tips is positioned on the beam with each tip being in electrical contact with one of the conductors. A memory device may be constructed by providing an array of such cantilevered beams proximate to a layer of media. Devices for positioning the beam in x and y directions perpendicular to each other and parallel to the layer of media and in a z direction perpendicular to the media are provided. A control circuit generates control signals input to the positioning devices for positioning the tips according to x, y, and z coordinates. A read/write circuit which is in electrical communication with the conductors of the beam, provide signals to the tips to cause the tips to write those signals to the layer of media in a write mode and to read previously written signals sensed by the tips in a read mode. A fabrication method is also disclosed.
Abstract:
A microelectronic device comprises local digit line structures, global digit line structures, source line structures, sense transistors, read transistors, and write transistors. The local digit line structures are coupled to strings of memory cells. The global digit line structures overlie the local digit line structures. The source line structures are interposed between the local digit line structures and the global digit line structures. The sense transistors are interposed between the source line structures and the global digit line structures, and are coupled to the local digit line structures and the source line structures. The read transistors are interposed between and are coupled to the sense transistors and the global digit line structures. The write transistors are interposed between and are coupled to the global digit line structures and the local digit line structures. Additional microelectronic devices, memory devices, and electronic systems are also described.
Abstract:
High-density microfluidic chips contain plumbing networks with thousands of micromechanical valves and hundreds of individually addressable chambers. These fluidic devices are analogous to electronic integrated circuits fabricated using large scale integration (LSI). A component of these networks is the fluidic multiplexor, which is a combinatorial array of binary valve patterns that exponentially increases the processing power of a network by allowing complex fluid manipulations with a minimal number of inputs. These integrated microfluidic networks can be used to construct a variety of highly complex microfluidic devices, for example the microfluidic analog of a comparator array, and a microfluidic memory storage device resembling electronic random access memories.
Abstract:
In one embodiment, the present invention includes a method for forming a sacrificial oxide layer on a base layer of a microelectromechanical systems (MEMS) probe, patterning the sacrificial oxide layer to provide a first trench pattern having a substantially rectangular form and a second trench pattern having a substantially rectangular portion and a lateral portion extending from the substantially rectangular portion, and depositing a conductive layer on the patterned sacrificial oxide layer to fill the first and second trench patterns to form a support structure for the MEMS probe and a cantilever portion of the MEMS probe. Other embodiments are described and claimed.
Abstract:
A method is disclosed for forming a single crystal cantilever and tip on a substrate. The method can include the operation of defining an implant area on the substrate with a layer of photoresist. A further operation can be implanting oxygen into the substrate in the implant area to a predetermined depth to form a buried oxide layer. The buried oxide layer can define a bottom of the single crystal cantilever and tip. Another operation can involve shaping the single crystal cantilever and tip from the substrate above the buried oxide layer.
Abstract:
A microelectronic device comprises local digit line structures, global digit line structures, source line structures, sense transistors, read transistors, and write transistors. The local digit line structures are coupled to strings of memory cells. The global digit line structures overlie the local digit line structures. The source line structures are interposed between the local digit line structures and the global digit line structures. The sense transistors are interposed between the source line structures and the global digit line structures, and are coupled to the local digit line structures and the source line structures. The read transistors are interposed between and are coupled to the sense transistors and the global digit line structures. The write transistors are interposed between and are coupled to the global digit line structures and the local digit line structures. Additional microelectronic devices, memory devices, and electronic systems are also described.
Abstract:
An electrical circuit comprising at least two negative capacitance insulators connected in series, one of the two negative capacitance insulators is biased to generate a negative capacitance. One of the negative capacitance insulators may include an air-gap which is part of a nanoelectromechnical system (NEMS) device and the second negative capacitance insulator includes a ferroelectric material. Both of the negative capacitance insulators may be located between the channel and gate of a field effect transistor. The NEMS device may include a movable electrode, a dielectric and a fixed electrode and arranged so that the movable electrode is attached to at least two points and spaced apart from the dielectric and fixed electrode, and the ferroelectric capacitor is electrically connected to either of the electrodes.
Abstract:
High-density microfluidic chips contain plumbing networks with thousands of micromechanical valves and hundreds of individually addressable chambers. These fluidic devices are analogous to electronic integrated circuits fabricated using large scale integration (LSI). A component of these networks is the fluidic multiplexor, which is a combinatorial array of binary valve patterns that exponentially increases the processing power of a network by allowing complex fluid manipulations with a minimal number of inputs. These integrated microfluidic networks can be used to construct a variety of highly complex microfluidic devices, for example the microfluidic analog of a comparator array, and a microfluidic memory storage device resembling electronic random access memories.
Abstract:
A process for manufacturing an interaction system of a microelectromechanical type for a storage medium, the interaction system provided with a supporting element and an interaction element carried by the supporting element, envisages the steps of: providing a wafer of semiconductor material having a substrate with a first type of conductivity and a top surface; forming a first interaction region having a second type of conductivity, opposite to the first type of conductivity, in a surface portion of the substrate in the proximity of the top surface; and carrying out an electrochemical etch of the substrate starting from the top surface, the etching being selective with respect to the second type of conductivity, so as to remove the surface portion of the substrate and separate the first interaction region from the substrate, thus forming the supporting element.