摘要:
An ion implantation method useful for fabricating shallow trench isolation structureimplants phosphorus ions instead of arsenic ions into a substrate when the source/drain regions of an NMOS device are doped. Alternatively, low energy ions are used in the ion implantation for forming the source/drain regions of an NMOS device. Consequently lattice dislocations of the crystal structure within a substrate is reduced and unwanted device leakage current is eliminated.
摘要:
A method of enhancing chemical mechanical polishing uniformity is provided. In the fabrication of a shallow trench isolation structure, there are active area regions with different integration formed in a chip. The integration of the active area regions in the chip is computed according circuit designs by a program analysis. One of the active area regions with the highest integration is used as a basis, dummy mesas are formed in the other active area regions to adjust the integration of the chip.
摘要:
A method for forming a shallow trench isolation used to isolate a device is provided. A pad oxide and a mask layer are formed on a substrate and patterned. A trench is formed within the substrate under the patterned region and the trench is filled with insulator to form an insulation plug, which is a shallow trench isolation. A dielectric layer is formed on the whole substrate surface to cover the device region and the insulation plug.
摘要:
A method of manufacturing a bottom electrode of a capacitor. A substrate has a contact pad formed thereon, a first dielectric layer is formed on the contact pad, and a node contact penetrates through the first dielectric layer and electrically couples to the contact pad. A second dielectric layer is formed on the first dielectric layer and the node contact. A third dielectric layer is formed on the second dielectric layer. A fourth dielectric layer is formed on the third dielectric layer. A trench is formed to penetrate through the fourth, the third and the second dielectric layer and to expose a surface of the node contact. A conductive layer is formed on the fourth dielectric layer and a sidewall and a bottom of the trench. A fifth dielectric layer is formed on the conductive layer, wherein the fifth dielectric layer fills the trench. A portion of the fifth dielectric layer and a portion of the conductive layer are removed until a surface of the fourth dielectric layer is exposed. The remaining fifth dielectric layer and the fourth dielectric layer are removed.
摘要:
A method of fabricating a system on a chip device. On a substrate having a memory cell region and a peripheral circuit region a gate oxide layer and a polysilicon layer are formed. The peripheral circuit region can further be divided into a logic device region and a hybrid circuit region. A dielectric layer is formed on the peripheral circuit region. A cap layer and a conductive layer are further formed on the polysilicon layer in the memory cell region and on the dielectric layer in the peripheral circuit region. Using the dielectric layer in the peripheral circuit region and the gate oxide layer in the memory cell region as etch stop, the cap layer and the conductive layer in the peripheral circuit region, and the cap layer, the conductive layer and the polysilicon layer are patterned. As a result, at least a gate and a top electrode are formed in the memory cell region and the hybrid circuit region, respectively. Using the gate oxide layer in the peripheral circuit region as an etch stop, the dielectric layer and the conductive layer in the peripheral circuit region are patterned to form a gate in the logic circuit region and the hybrid circuit region, respectively.
摘要:
The present invention provides a method to make a local interconnect in an embedded memory. The method first involves defining both a memory array area and a periphery circuit area on the surface of a semiconductor wafer. Then, a plurality of gates and lightly doped drains (LDD) are separately formed in the memory array area and in the periphery circuit area. A silicon nitride layer and a dielectric layer are then formed, respectively, on the surface of the semiconductor wafer and on each gate. Next, a plurality of landing via holes and local interconnect holes are separately formed in the dielectric layer in the memory array area and in the periphery circuit area, followed by the filling of an electrical conducting layer in each hole to simultaneously form a landing via and local interconnect. Then, the dielectric layer and a portion of the silicon nitride layer in the periphery circuit area are removed to form a spacer on either side of each gate in the periphery circuit area. Finally, a silicide layer is formed on the top surface of the landing via in the memory array area, as well as on the surfaces of each gate and on the surface of the local interconnect in the periphery circuit area.
摘要:
The invention provides a method of avoiding peeling on the wafer edge and the mark number. The method uses a design rule to expose the multi-layer on a wafer. The limit and the scope of the exposed distance are taken to ensure the polysilicon layers and the metal layers are covered by the dielectric layer after exposure. The polysilicon layers or the metal layers don't unclothe from the overlarge distance at the exposed dielectric layer, so the next structure formed on the exposed dielectric layer doesn't peeling from contacting with the polysilicon layer or the metal layer. The invention avoids to contaminate the wafer and the machine after the particles forming from peeling.
摘要:
A method of fabricating a semiconductor device includes the following steps. A semiconductor substrate having a first side and a second side facing to the first side is provided. At least an opening is disposed in the semiconductor substrate of a protection region defined in the first side. A first material layer is formed on the first side and the second side, and the first material layer partially fills the opening. Subsequently, a part of the first material layer on the first side and outside the protection region is removed. A second material layer is formed on the first side and the second side, and the second material layer fills the opening. Then, a part of the second material layer on the first side and outside the protection region is removed. Finally, the remaining first material layer and the remaining second material layer on the first side are planarized.
摘要:
A method of fabricating a semiconductor device includes the following steps. A semiconductor substrate having a first side and a second side facing to the first side is provided. At least an opening is disposed in the semiconductor substrate of a protection region defined in the first side. A first material layer is formed on the first side and the second side, and the first material layer partially fills the opening. Subsequently, a part of the first material layer on the first side and outside the protection region is removed. A second material layer is formed on the first side and the second side, and the second material layer fills the opening. Then, a part of the second material layer on the first side and outside the protection region is removed. Finally, the remaining first material layer and the remaining second material layer on the first side are planarized.
摘要:
A trench capacitor structure includes a semiconductor substrate comprising thereon a STI structure. A capacitor deep trench is etched into the semiconductor substrate. Collar oxide layer is disposed on inner surface of the capacitor deep trench. A first doped polysilicon layer is disposed on the collar oxide layer and on the exposed bottom of the capacitor deep trench. A capacitor dielectric layer is formed on the first doped polysilicon layer. A second doped polysilicon layer is formed on the capacitor dielectric layer. A deep ion well is formed in the semiconductor substrate, wherein the deep ion well is electrically connected with the first doped polysilicon layer through the bottom of the capacitor deep trench. A passing gate insulation (PGI) layer is formed on the second doped polysilicon layer and on the STI structure.