Abstract:
A millimeter wave integrated circuit (IC) chip. The IC chip comprises an IC die and a wire bond ball grid array package encapsulating the IC die. The wire bond ball grid array package comprises a solder ball array, a millimeter wave transmit channel, and a millimeter wave receive channel, wherein each millimeter wave transmit and receive channel electrically couples the IC die to a signal ball of the solder ball array and is configured to resonate at an operating frequency band of the millimeter wave IC chip.
Abstract:
In examples, a package comprises first and second dies including first and second diodes, respectively. The package comprises first and second metal contacts coupled to bottom surfaces of the first and second dies, respectively, with the first and second metal contacts exposed to a bottom surface of the package. The package also comprises an isolation layer between the first and second dies and between the first and second metal contacts and a metal layer coupled to top surfaces of the first and second dies. The package also comprises a mold compound covering the first and second dies and the metal layer.
Abstract:
An example method includes forming a cavity in a multi-layer substrate of a leadframe. The cavity extends from a first substrate surface of the leadframe into the multi-layer substrate to define a cavity floor spaced from the first substrate surface by a cavity sidewall, and at least one conductive terminal is on the cavity floor. The method also includes placing an inductor module in the cavity, in which the inductor module includes a conductor embedded within a dielectric substrate between spaced apart first and second inductor terminals of the inductor module. The method also includes coupling at least one of the first and second inductor terminals to the at least one conductive terminal on the cavity floor. The method also includes encapsulating the inductor module and at least a portion of the leadframe with a mold compound.
Abstract:
In an example, an apparatus comprises a lead frame that includes a first row of leads, a first pad coupled to th first row of leads, and a second row of leads parallel to the first row of leads. The lead frame also includes a second pad coupled to the second row of leads. The first and second pads are separated by a gap, and each of the first and second pads has a substantially uniform thickness. The apparatus also includes a device coupled to the first and second pads. The first and second pads are exposed to an exterior of the apparatus.
Abstract:
In examples, a semiconductor package comprises a substrate and multiple columns of semiconductor dies positioned approximately in parallel along a length of the substrate. The package also includes multiple passive components positioned between the multiple columns of semiconductor dies, the multiple passive components angled between 30 and 60 degrees relative to the length of the substrate, a pair of the multiple passive components having a gap therebetween that is configured to permit mold compound flow through capillary action. The package also includes a mold compound covering the substrate, the multiple columns of semiconductor dies, and the multiple passive components.
Abstract:
In an example, an apparatus comprises a lead frame that includes a first row of leads, a first pad coupled to the first row of leads, and a second row of leads parallel to the first row of leads. The lead frame also includes a second pad coupled to the second row of leads. The first and second pads are separated by a gap, and each of the first and second pads has a substantially uniform thickness. The apparatus also includes a device coupled to the first and second pads. The first and second pads are exposed to an exterior of the apparatus.
Abstract:
In examples, a power device comprises a first wide bandgap semiconductor die including a high-side transistor; a second wide bandgap semiconductor die including a low-side transistor; and a conductive device coupled to the first and second wide bandgap semiconductor dies. The conductive device comprises a first layer including a first metal member having fingers at first and second ends of the first metal member, a second metal member having fingers interleaved with fingers of the first metal member at the first end, and a third metal member having fingers interleaved with fingers of the first metal member at the second end. The conductive device also comprises multiple layers in vertical alignment with the first layer, the first, second, and third metal members extending through the multiple layers. The conductive device also comprises a dielectric material covering the first layer and the multiple layers. The power device comprises a connection layer coupling the conductive device to each of the first and second wide bandgap semiconductor dies, with the connection layer including the first, second, and third metal members, and with the first metal member having connection layer fingers at the first and second ends of the first metal member. The second metal member has connection layer fingers interleaved with connection layer fingers of the first metal member at the first end, and the third metal member has connection layer fingers interleaved with connection layer fingers of the first metal member at the second end.
Abstract:
A millimeter wave integrated circuit (IC) chip. The IC chip comprises an IC die and a wire bond ball grid array package encapsulating the IC die. The wire bond ball grid array package comprises a solder ball array, a millimeter wave transmit channel, and a millimeter wave receive channel, wherein each millimeter wave transmit and receive channel electrically couples the IC die to a signal ball of the solder ball array and is configured to resonate at an operating frequency band of the millimeter wave IC chip.