Abstract:
An integrated circuit includes an epitaxial layer over a semiconductor substrate. The epitaxial layer has a first conductivity type and a top surface. First, second and third trenches are located in the epitaxial layer. The trenches respectively include first, second and third field plates. First and second body members are located within the epitaxial layer and have a different second conductivity type. The first body member is located between the first and second trenches, and the second body member is located between the second and third trenches. The first body member extends a first distance between the top surface and the substrate, and the second body member extends a lesser second distance between the top surface and the substrate.
Abstract:
In at least some embodiments, a system comprises a socket gate terminal configured to receive a first voltage to activate and inactivate a device under test (DUT) coupled to the socket gate terminal. The system also comprises a socket source terminal configured to provide a reference voltage to the DUT. The system further comprises a socket drain terminal configured to provide a second voltage to the DUT to stress the DUT when the DUT is inactive. The socket drain terminal is further configured to receive a third voltage to cause a current to flow through a pathway in the DUT between the socket drain terminal and the socket source terminal when the DUT is active. The socket drain terminal is further configured to provide a fourth voltage indicative of a resistance of the pathway in the DUT when the DUT is active and is heated to a temperature above an ambient temperature associated with the system.
Abstract:
A semiconductor device containing a GaN FET has an isolating gate structure outside the channel area which is operable to block current in the two-dimensional electron gas between two regions of the semiconductor device. The isolating gate structure is formed concurrently with the gate of the GaN FET, and has a same structure as the gate.
Abstract:
A semiconductor device is formed with a stepped field plate over at least three sequential regions in which a total dielectric thickness under the stepped field plate is at least 10 percent thicker in each region compared to the preceding region. The total dielectric thickness in each region is uniform. The stepped field plate is formed over at least two dielectric layers, of which at least all but one dielectric layer is patterned so that at least a portion of a patterned dielectric layer is removed in one or more regions of the stepped field plate.
Abstract:
An integrated circuit containing an analog MOS transistor has an implant mask for a well which blocks well dopants from two diluted regions at edges of the gate, but exposes a channel region to the well dopants. A thermal drive step diffuses the implanted well dopants across the two diluted regions to form a continuous well with lower doping densities in the two diluted regions. Source/drain regions are formed adjacent to and underlapping the gate by implanting source/drain dopants into the substrate adjacent to the gate using the gate as a blocking layer and subsequently annealing the substrate so that the implanted source/drain dopants provide a desired extent of underlap of the source/drain regions under the gate. Drain extension dopants and halo dopants are not implanted into the substrate adjacent to the gate.
Abstract:
In some examples, a transistor comprises a gallium nitride (GaN) layer; a GaN-based alloy layer having a top side and disposed on the GaN layer, wherein source, drain, and gate contact structures are supported by the GaN layer, and a first doped region positioned in a drain access region and extending from the top side into the GaN layer.
Abstract:
An electronic device, that in various embodiments includes a first semiconductor layer comprising a first group III nitride. A second semiconductor layer is located directly on the first semiconductor layer and comprises a second different group III nitride. A cap layer comprising the first group III nitride is located directly on the second semiconductor layer. A dielectric layer is located over the cap layer and directly contacts the second semiconductor layer through an opening in the cap layer.
Abstract:
A High Electron Mobility Transistor (HEMT) includes an active layer on a substrate, and a Group IIIA-N barrier layer on the active layer. An isolation region is through the barrier layer to provide at least one isolated active area including the barrier layer on the active layer. A gate is over the barrier layer. A drain includes at least one drain finger including a fingertip having a drain contact extending into the barrier layer to contact to the active layer and a source having a source contact extending into the barrier layer to contact to the active layer. The source forms a loop that encircles the drain. The isolation region includes a portion positioned between the source and drain contact so that there is a conduction barrier in a length direction between the drain contact of the fingertip and the source.
Abstract:
An integrated circuit and method having an extended drain MOS transistor with a buried drift region, a drain end diffused link between the buried drift region and the drain contact, and a concurrently formed channel end diffused link between the buried drift region and the channel, where the channel end diffused link is formed by implanting through segmented areas to dilute the doping to less than two-thirds the doping in the drain end diffused link.
Abstract:
An integrated circuit containing an extended drain MOS transistor which has a drift layer, an upper RESURF layer over and contacting an upper surface of the drift layer, and a buried drain extension below the drift layer which is electrically connected to the drift layer at the drain end and separated from the drift layer at the channel end. A lower RESURF layer may be formed between the drift layer and the buried drain extension at the channel end. Any of the upper RESURF layer, the drift layer, the lower RESURF layer and the buried drain extension may have a graded doping density from the drain end to the channel end. A process of forming an integrated circuit containing an extended drain MOS transistor which has the drift layer, the upper RESURF layer, and the buried drain extension.